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Stereoscopic vision depends on correct matching of corresponding
features between the two eyes. It is unclear where the brain solves
this binocular correspondence problem. Although our visual system
is able tomake correct global matches, there are many possible false
matches between any two images. Here, we use optical imaging
data of binocular disparity response in the visual cortex of awake
and anesthetized monkeys to demonstrate that the second visual
cortical area (V2) is the first cortical stage that correctly discards
false matches and robustly encodes correct matches. Our findings
indicate that a key transformation for achieving depth perception
lies in early stages of extrastriate visual cortex and is achieved by
population coding.
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Primates are characterized by forward-pointing eyes and per-
ceive depth in visual scenes by detecting small positional

differences between corresponding visual features in the left
eye and right eye images. The slight difference, called binocular
disparity, is used to restore the third visual dimension of depth
and achieve binocular depth perception, or stereopsis (1, 2). To
extract binocular disparity, the brain needs to determine which
features in the right eye correspond to those in the left eye
(correct matches) and which do not (false matches), a problem
referred to as the binocular correspondence problem. However,
where this problem is solved in the brain and how it is solved is
unclear. A useful tool for studying the correspondence problem
is random dot stereograms (RDSs) (3). Patterns of correlated
RDSs (cRDSs) are composed of a pair of identical random dot
images in which some dots in one image are shifted relative to
those in the other image (Fig. 1A, red box is shifted in the left vs.
right eye). When viewed monocularly, each eye sees a field of
dots, but when viewed binocularly, the dots with relative hori-
zontal shifts appear in depth. As only dots with the same contrast
(e.g., black–black or white–white) can form matches, cRDSs
contain a global correct matching between left and right images
(Fig. 1A), and a depth percept is achieved. Anticorrelated RDSs
(aRDSs), constructed by reversing the contrast of one image in
cRDSs (Fig. 1B), contain only local false matches and therefore
no global figural percept.
In the visual system, disparity-selective response is initially

established in V1 (4). Neurons in V1 exhibit sensitivity to a
narrow range of depths. However, neither neurons in V1 nor
neurons in V2, which receives ascending information primarily
from V1, are able individually to solve the binocular corre-
spondence problem (5, 6). This is due to the fact that individual
units are local spatial filters that respond to both global correct
matches and local false matches (7). Thus, single neuron re-
sponse in these early stages alone are insufficient for producing
depth perception (5). Computational models have suggested that

the binocular correspondence problem can be solved by adding
a second stage (8). In the first stage, disparity is computed by
simple cross-correlation between local information from the left
and right eye images. Individual neurons in V1 and V2, which
have been shown to perform this computation, thus comprise
the first stage. However, the output of these single neurons is
ambiguous, as they respond to both correct and false matches.
Thus, a second stage is needed to extract unambiguous global
matches. This has been proposed to be achieved by pooling
populations of first stage neurons across spatial locations, ori-
entations, and spatial scales (8–10). Single neuron recording
results indicate important roles of individual neurons of V2, V4,
medial temporal cortex (MT), and inferior temporal cortex (IT)
(6, 11–13) in this processing. However, these ideas regarding
the binocular correspondence problem, both the population
coding hypothesis and where this second stage may reside in the
visual system, have not been fully tested experimentally at the
population level.
In this study, we addressed the binocular correspondence

problem by conducting optical imaging of the visual cortical re-
sponse in macaque monkeys. In the awake, behaving monkey, we
found that imaged responses in V2 discard false matches, in
parallel with perception reported by the monkey in a depth dis-
crimination task. We also found, using decoding methods applied
to optical image data, that in V2, the population responses to
cRDSs, but not to corresponding aRDSs stimuli, could be con-
sistently decoded. These studies therefore support the hypothesis
that binocular correspondence is achieved de novo by population
coding and that this second stage initiates in V2.

Significance

A long-standing problem in visual depth perception is how
corresponding features between the two eyes are matched
(the “binocular correspondence problem”). Here, we show,
using optical imaging in monkey visual cortex, that this com-
putation occurs in the near and far disparity domains of V2,
and that functional organization in V2 might facilitate the
pooling of disparity signals that can reduce false matches to
solve the binocular correspondence problem.
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Results
Monkeys Perceive RDS-Induced Depth. To confirm that macaque
monkeys perceive RDS-induced depth perception, we trained
one monkey (M1) to report depth perception behaviorally.
M1 reported the depth perception of a cRDS-defined surface
with an average correct rate of 93.3 ± 1.4% (n = 10 sessions;
green bar in Fig. 1C), well above chance level (P = 1.4 × 10−10).
For comparison, when the contrast of corresponding pixels was
reversed (aRDSs), the performance decreased to chance levels
(P = 0.08; 53.3 ± 1.5%, n = 6 sessions; magenta bar in Fig. 1C).
This behavioral performance was similar to those reported
in human subjects (3) and in monkeys (5) and is consistent with
the observation that aRDS stimuli do not create conscious
depth percepts.

Disparity Domain Activations in V2 Parallel Depth Perception in
Awake Monkeys. We previously reported, using optical imaging
in the anesthetized macaque monkey, that there are regions in
V2 that contain near-to-far disparity processing domains (14).
Here, to examine the neural basis of the observed cRDS and
aRDS perception, we performed optical imaging from two awake
monkeys (Fig. 2 A–C, M2, and Fig. 2 D–F, M3) performing a
visual fixation task during presentation of cRDS and aRDS
stimuli. We then calculated differential disparity maps between
the cortical activation in response to cRDS stimuli of −0.34°
(NEAR perception) and +0.34° (FAR perception) disparities. As
shown in Fig. 2 B and E, regions of prominent dark domains
(stronger activation to NEAR than FAR stimulation, red outlines)
and adjacent light domains (stronger response to FAR than
NEAR stimulation. blue outlines) are visible in V2. Consistent
with reports from anesthetized monkeys, no functional architec-
ture for disparity preference was detected within V1. This dem-
onstrates near-to-far disparity maps in V2 in the awake monkey.
We then examined cortical responses to aRDSs. The energy

model predicts a robust neural response to false matches (7), a
prediction that has been supported by the study of single neurons
in both V1 and V2 (5, 6). Given the presence of NEAR and FAR
disparity domains in V2, it would predict an inverted disparity
selectivity to aRDS relative to cRDS. If aRDS induces a reversed
contrast disparity differential map in V2, it would indicate that
the binocular correspondence problem is not yet resolved at
the stage of V2. Otherwise, it would suggest a resolution of the
correspondence problem at that stage. Fig. 2 C and F shows the
cortical activation (shown with same gray scale for cRDS images)
to aRDSs. In contrast to Fig. 2 B and E, there is no evidence of
functional activation. The even gray maps (red and blue contours)
indicate that there is little difference between cortical responses
to −0.34° and +0.34° disparity aRDS stimuli. Thus, the contrast

reversal predicted by the energy model was not observed, sug-
gesting some solution of the correspondence problem in V2.

Decoding Disparity Using Pattern Classification. Thus far, we have
established that in the awake monkey V2, there is a distinguish-
able disparity response for NEAR vs. FAR cRDS, but not aRDS,
stimuli. However, it is possible, since only two disparities were
examined in the differential map, that there may still exist a dif-
ferential response to aRDS-defined disparities. To address this
possibility, we applied pattern classification (15) to a set of images
acquired in response to seven different horizontal disparities
(−0.34°, −0.17°, −0.085°, 0°, +0.085°, +0.17°, and +0.34°) (Fig.
S1). We expected that cortical areas that are selective for disparity
information would have a higher than chance level of correct
predictions and those not selective would perform at chance.
When applied to optical imaging data from V1 and V2 in the

awake monkey, we found that activation patterns in V2, but not
V1, predict cRDS-defined disparities. As shown in Fig. 3A (M2,
same case shown in Fig. 2 A–C), decoding reveals that activity in
V1 is at chance levels (yellow bar; P = 0.49, n = 7 disparity
conditions; chance level = 14.3%), while responses from V2
could be decoded at better than chance levels (40.0 ± 1.5%,
green bar; P = 0.002). Importantly, decoding of aRDS stimuli
produced chance level results in both V2 (Fig. 3A, magenta; P =
0.77) and V1 (Fig. 3A, blue; P = 0.19). Similar results were found
in the second awake monkey case (Fig. 3F). Therefore, the op-
tical imaging responses of V2, instead of V1, appear to encode
depth from binocular matching.
As a further control, we examined the evolution of the pre-

diction over the 3.5-s imaging period. We expected that, because
the intrinsic optical signal is known to develop over 2–3 s (16),
the correct prediction rates should initially (in the first 0.5 s)
be close to chance level and increase over the following 2–3 s.
We thus expected prediction rates to increase for the cRDS
responses in V2 but not for cRDS responses in V1 or for aRDS
responses in V1 or V2. Our time course analyses fulfilled these
predictions. Fig. 3B shows that on average correct rates were
around chance level in V2 during the first 0.5 s (P = 1.0 at 0 s;

Fig. 1. Binocular correspondence problem: perception of cRDS and aRDS.
(A) In cRDSs, corresponding dots in the left and right eye images have the
same contrast. Below the left and right RDSs (red boxes) are enlarged por-
tions of the dots to demonstrate that the corresponding dots are matched in
contrast. (B) In aRDSs, corresponding dots have reversed contrast. (C) Psy-
chophysical performance of a monkey performing NEAR vs. FAR discrimi-
nation of cRDS (green) and aRDS (magenta) stimuli. (D) Pattern classification
performance of V2 performing NEAR vs. FAR discrimination of cRDS (green)
and aRDS (magenta) stimuli. Dotted line, chance level performance. Error
bars ± SEM. *P < 0.05, **P < 0.01.

Fig. 2. Disparity preference domains in V2 of awake monkeys, and optical
images obtained in response to random dot stimuli in two awake monkeys
(M2, A–C; M3, D–F). (A) Surface blood vessel pattern of the imaging area.
Yellow rectangle, location of enlarged imaged region shown in B and C; green
rectangle, enlarged imaged region shown in Fig. 5. Contours of large vessels
are marked as red and are excluded from analysis. Orange dashed line, border
between V1 and V2. (Scale bar, 1 mm.) A, anterior; M, medial. (B) Differential
image between cRDS stimuli with +0.34° (FAR percept, light pixels, blue con-
tours) and disparity of −0.34° (NEAR percept, dark pixels, red contours).
(C) Differential image between aRDS stimuli with a disparity of −0.34° and
+0.34°. Positions of red and blue contours are the same as in B. (D–F) Con-
ventions the same as in A–C. [Scale bars (B, C, E, and F), 1 mm.]
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P = 0.66 at 0.25 s; n = 7 disparity conditions) and increased over
time with a slope (7.4%/s) significantly greater than zero (P =
1.37 × 10−8, n = 98 data points, r = 0.59). Similar tendencies
were found in the second awake case we studied (Fig. 3G,
slope = 6.2%/s, P = 2.81 × 10−12, n = 98 data points, r = 0.65). In
comparison, decoding of V2 activity in response to aRDS
revealed time courses close to chance levels (Fig. 3 C and H).
Similarly, time courses in V1 in response to both cRDSs (Fig. 3
D and I) and aRDSs (Fig. 3 E and J) remained close to chance
levels. Thus, pattern classification predictions improved over the
optical time course as expected but were unable to distinguish
between cRDS responses in V1 or between aRDS responses in
V1 or in V2 over this period. This further indicates that with the
population response level revealed by imaging, only information
from correct matches is encoded in V2 and disparity information
from false matches is lost.

Contribution of Eye Vergence. The discrimination of fine disparity
(retinal disparity <0.5°) is often accompanied by vergence move-
ments in humans and in monkeys (17). One concern is that the
NEAR and FAR stimuli induced distinct eye vergence movements,
thereby complicating the interpretation of our decoding results.
To examine this possibility, we examined the monkeys’ vergence
eye movements by tracking both eyes with a near infrared eye
tracker. As described in other studies, we noticed that monkeys’
eyes would exhibit a small (<0.1°) degree of vergence movement
with RDS presentation (Fig. S2A, blue, green, magenta, orange),
one that was not present during fixation without RDS presenta-
tion (Fig. S2A, black). However, this small vergence drift occurred
with both cRDSs and aRDSs: The magnitude of this drift did
not differ across the different RDS stimulus conditions (Fig. S2B,
P = 0.94, n = 6 sessions, one-way ANOVA), and it occurred
independent of the direction (NEAR or FAR) of the depth per-
cept. We observed that eye vergence occurred similarly across all
RDS conditions and thus unlikely contributed to the differential
decoding found in Fig. 3. However, we believe there may be
some small, uniform contribution to decoding accuracy. Close
examination of Fig. 3 C–E and H–J reveals that the accuracy of
the prediction to V2 aRDS (Fig. 3 C and H), V1 cRDS (Fig. 3D),
and V1 aRDS (Fig. 3 E and J) defined disparities improved
slightly over the fixation period (e.g., Fig. 3C, slope rate of
1.9%/s is significantly different from zero, P = 0.017, n = 98 data
points, r = 0.20). This evidence suggests that there may be a

small contribution of vergence movement to decoding of RDS-
induced population activity in V2, although in a way that does
not distinguish between the different RDS conditions. This also
shows that the pattern classification method is sensitive enough
to detect these weak biases. The origin of these biases may
relate to vergence status change inherent to fixation behavior
(17) or to other effects such as effects of attention from higher
cortical areas.
Although these vergence movements appeared to be small

(<0.1°), the fact that they paralleled the upward drift in aRDS
decoding accuracy was a concern we wanted to address. We
therefore conducted parallel studies in anesthetized and para-
lyzed monkeys to remove eye drift and possible vergence com-
ponents in RDS responses. As we previously described, using
neuromuscular blockers, the vergence status of eyes can be sta-
bilized during the entire period of a typical functional imaging
session lasting a few hours (18). Furthermore, under anesthesia,
cortical feedback from higher areas is greatly reduced, thereby
removing extraretinal factors such as attention. The patterns of
RDS used had the same dot size, density, and refresh rate as
those used in awake monkeys. Consistent with our data from
awake monkeys, in anesthetized, paralyzed macaques (n = 6 an-
imals), we found NEAR and FAR preference domains in V2 but
not V1; these maps were only obtained with differential activa-
tion to cRDS (Fig. 4C) but not to aRDS (Fig. 4D) defined dis-
parities. In five of the six cases examined (green bars in Fig. 4E
and Fig. S3A; average shown in Fig. 4F; n = 6 cases), decoding of
the seven cRDS activity patterns within anesthetized V2 pre-
dicted correct matching at a rate significantly greater than
chance (dotted line) (all Ps < 0.007). The aRDS stimuli were not
correctly decoded (magenta bars in Fig. 4E and Fig. S3A; aver-
age shown in Fig. 4F). These average prediction rates were
similar to those obtained in awake monkeys (cRDS, P = 0.44;
aRDS, P = 0.19; two awake cases and six anesthetized cases, one-
way ANOVA). The time course of correct prediction rates fur-
ther supported such similarity in anesthetized monkeys. We
found, in general, correct rates were at chance level in V2 during
the first 0.5 s and increased over time with a slope signifi-
cantly greater than zero (Fig. 4G and Fig. S3B, green curves;
all slopes for cRDS were significantly larger than zero; M4,
P = 5.27 × 10−5, slope = 4.5%/s, r = 0.36; M5, P = 3.52 × 10−5,
slope = 3.0%/s, r = 0.43; M6, P = 1.00 × 10−16, slope = 8.9%/s,
r = 0.71; M7, P = 2.01 × 10−4, slope = 4.4%/s, r = 0.44; M8,
P = 1.70 × 10−5, slope = 3.0%/s, r = 0.42; M1, P = 3.85 × 10−5,
slope = 3.3%/s, r = 0.35; n = 98 data points; Fig. 4H, average of
six cases, P = 3.77 × 10−11, slope = 5.0%/s, r = 0.61, n = 84 data
points). Therefore, anesthesia and paralysis did not influence
the disparity encoding in V2 significantly. In contrast, accuracy
remained at chance levels for aRDS stimuli (Fig. 4G and Fig.
S3B, magenta curves, all slopes not significantly different from
zero; M4, P = 0.95, slope = 5.6 × 10−7%/s, r = 0.16; M5, P = 0.059,
slope = −1.5%/s, r = 0.13; M6, P = 0.23, slope = −1.1%/s, r = 0.23;
M7, P = 0.99, slope = 0.01%/s, r = 0.19; M8, P = 0.07, slope =
1.3%/s, r = 0.07; M1, P = 0.99, slope = 0.01%/s, r = 0.20;
n = 98 data points; Fig. 4H, average of six cases, P = 0.10,
slope = −0.45%/s, r = 0.08, n = 84 data points). Note that, unlike
in the awake monkey, the aRDS accuracy remains fairly flat over
time, lacking a consistent upward drift. Thus, when vergence eye
movements are eliminated, the small increase in decoding accu-
racy is not seen, indicating that a small but detectable component
of the decoding may be contributed by factors unrelated to depth
perception in the awake monkey. These results further eliminate
the possibility that our results are contaminated by eye vergence
contributions.

Energy Model Fails to Predict V2 Response.As described in previous
studies, the tuning curves of neurons to horizontal disparities
defined by cRDS can be described by a Gabor function (7) (the
product of a Gaussian function and a cosine wave). The energy
model predicted that the phase of cosine function shifts by π
when tested with aRDS, and this phase shift is accompanied by a

Fig. 3. Pattern classification analysis of seven disparities. (A and F) Disparity
information defined by correct matching (green) was decoded by V2 (green)
but not by V1 (yellow). Neither V1 (blue) nor V2 (magenta) decoded aRDS
stimuli. Dotted line, chance level performance. (B–E, M2; G–J, M3) Evolution
of prediction accuracy over a 3.5-s imaging period. Correct predictions in-
creased over time in V2 based on correct matching (B and G) but not based
on false matching in V2 (C and H). In V1, neither correct matching (D and I)
nor false matching (E and J) achieved predictions different from chance.
Error bars, ±SEM. *P < 0.05, **P < 0.01.
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lower (∼50% less in V1 and V2) response amplitude (5–7). Thus,
another possible reason for failure to decode false matching is
the possibility that V2 exhibits responses to false matching but
with lower amplitude and that this low-amplitude response leads
to lack of disparity decoding from false matching. If the energy
model sufficiently explains V2 responses, then neuronal re-
sponses to aRDSs (Fig. 5B) should be predicted from responses
to cRDSs (Fig. 5A). However, as shown below, we found this not
to be the case. In fact, our analysis supports the lack of figural
depth decoding with aRDSs (Fig. 5C).
Fig. 5D illustrates images obtained in response to NEAR

cRDSs (magenta) and FAR cRDSs (green). Contours of the
NEAR domain (enlarged from the green square in Fig. 2A) in
V2 are outlined with a blue contour based on a t map (P < 0.05).
When activated by cRDSs, pixels within the NEAR domain (blue
outline) were darker (more responsive) to NEAR (Fig. 5D, ma-
genta) and brighter (less responsive) to FAR stimuli (Fig. 5D,
green) than the averaged response (average of seven conditions).
This preference is quantified in Fig. 5G: Across cases, responses
to NEAR (magenta, preferred) tend to have negative values and
to FAR stimuli (green, nonpreferred) positive values (96.8 ±
2.2% of pixels in the NEAR domain were more responsive to
NEAR than to FAR stimuli; significantly different from 50%, P =
0.017). We then used the energy model to calculate responses to
aRDSs based on activations to cRDSs. Fig. 5E illustrates the
resulting reversal to NEAR and to FAR stimuli, coupled with
reduced amplitude (50% less; smaller percent change in optical
response), as predicted by the energy model. This results in the
majority of pixels being more responsive to FAR (91.8 ± 3.9%,
significantly different from 50%, P = 0.018) and less to NEAR
stimuli (85.6 ± 6.6%, significantly different from 50%, P = 0.018)

compared with the average responses (Fig. 5H). However, actual
V2 data do not meet this prediction. In V2, responses to NEAR
and FAR stimuli were indistinguishable (Fig. 5F). On average,
although 59.0 ± 8.8% of pixels were more responsive to NEAR
than to FAR stimuli, this was not significantly different from 50%
(Fig. 5I, P = 0.31). Similar analysis of FAR domains illustrated
the same results. We summarize these results for both NEAR
and FAR data in Fig. 5 J–L by plotting mean responses to pre-
ferred (x axis) vs. nonpreferred (y axis) stimuli (Fig. 5J, response
to cRDS; Fig. 5K, response to aRDS predicted from Fig. 5J; and
Fig. 5L, actual V2 response to aRDS). Gray symbols represent
results from awake cases, white symbols represent results from
anesthetized cases, and data obtained from NEAR and FAR
domains are represented by circles and squares, respectively. As
expected, Fig. 5J reveals greater responses to preferred stimuli
(average responses to preferred stimuli, −0.015 ± 0.003%; to
nonpreferred stimuli, −0.015 ± 0.003%) and Fig. 5K greater
responses to nonpreferred stimuli. The median difference be-
tween preferred and nonpreferred stimuli was significantly dif-
ferent from zero (Fig. 5 J and K, P = 9.82 × 10−4). However, the
experimental data showed no difference between preferred and
nonpreferred (Fig. 5L, P = 0.22; average responses to preferred
stimuli, −0.001 ± 0.001%; to nonpreferred stimuli, −0.001 ±
0.002%). Thus, even when a lower amplitude of response was
considered, the energy model does not predict the observed re-
sponse to aRDSs in V2 and fails to discard false matches in
aRDS stimuli (Fig. 5C).
Our data suggest that, in contrast to the energy model, V2 can

respond to correct matches and reject false ones by pooling

Fig. 4. False matching is discarded in V2 of anesthetized monkeys. (A) Surface
blood vessel pattern of the imaging area in V2 of an anesthetized monkey.
Yellow rectangle, location of enlarged imaged region shown in B–D. Contours
of cortical areas with extensive vascular are marked as red. Orange dashed
lines in A–D, border between V1 and V2, which is revealed by ocular domi-
nance map (B). (Scale bar, 1 mm.) A, anterior; M, medial. (C) Differential image
between cRDS stimuli with a disparity of −0.34° (NEAR percept, dark pixels)
and +0.34° (FAR percept, dark pixels). (D) Differential image between aRDS
stimuli with a disparity of −0.34° and +0.34°. Positions of red and blue con-
tours are the same as in B and C. [Scale bar (B–D), 1 mm.] Disparity information
decoded from aRDS (magenta) was close to chance level, for one case (E) as
well as on average (F). For cRDS (green), prediction rate improved over time
for one case we tested (G) and on average (H). Those based on aRDS were flat
and close to chance level (magenta). Horizontal dotted lines, chance perfor-
mance. Error bars, ±SEM. *P < 0.05, **P < 0.01.

Fig. 5. Responses in V2 are not explained by the energy model. Predicted
responses to cRDSs (A) and aRDSs (B) based on the energy model. (C) Actual
percept. Dotted lines, average responses. (D) Imaged data from V2 to cRDS,
(E) predicted activation to aRDSs based on the energy model with decreased
amplitude (50% less), and (F) actual imaged responses in V2 to aRDSs. Blue
contours in D–F represent borders of a NEAR domain. [Scale bar (D–F),
0.5 mm.] Colors of arrows and image borders, magenta and green for NEAR-
average and FAR–average; averages were calculated from all seven disparity
conditions tested. (G) In response to cRDSs, the majority of pixels within
NEAR domains respond more to NEAR (magenta) than to FAR stimuli (green).
(H) Based on G, the prediction of the energy model to aRDS. (I) Actual imaged
data in V2 show no difference between NEAR and FAR aRDS conditions. Error
bars, ±SEM. (J–L) Population summary (white symbols, anesthetized cases; gray
symbols, awake cases; circles, NEAR domains; squares, FAR domains) of mean
responses to cRDS (J), prediction of energy model to aRDS (K), and actual
imaged responses in V2 to aRDS (L). Solid diagonal lines, equal preference for
preferred and nonpreferred stimuli.
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information over the population. Binocular correspondence may
be achieved in the population in a way that cannot be achieved at
the individual neuron level. By pooling over a population of
neurons with similar binocular disparity preference, the binocu-
lar correspondence for depth percept can be established. The
selectivity of population response to cRDSs and aRDSs illus-
trated by our optical imaging data suggests that such selective
pools are integrated within V2 disparity preference domains.
This underscores the importance of functional organization in
solving the binocular correspondence problem.

Discussion
In this study, using optical imaging, we found that in V2 false
binocular matches were discarded and only correct global matches
can be decoded at the population level in both anesthetized and
awake monkeys.
Previous electrophysiology studies have shown that the ma-

jority of neurons in V1 are tuned to both correct matching and
false matching (5). Similar tunings were also found among neu-
rons in V2 (6). In comparison with V1 and V2, neurons at higher
levels such as V4, MT, and IT (11–13) tend to reject false
matching. This suggests that the brain’s resolution to the corre-
spondence problem is not achieved by single units in V1 and
V2 but emerges at some intermediate processing stage between
V2 and higher stages (11, 12). Here, we provide evidence that this
intermediate stage is in V2. Our results indicate that V2 is the
initial locus of false matching elimination. MT, which receives
heavy inputs from both V1 and V2 (19), contains a significant
disparity response. Using aRDS stimuli, Krug et al. (13) report
that half of the disparity selective neurons in MT discard false
matches and the other half do not (figure 3 in ref. 13). One
possibility is that MT neurons that discard false matches receive
inputs predominantly from V2, while those that do not are dom-
inated by V1 inputs. Examination of MT responses to aRDSs
following cooling of V2 would help address this question (20).
Furthermore, our study demonstrates that population coding may
enable a critical transformation of disparity representation in the
visual cortex. Functional organization of V2 constrains possible
disparity values within the pooled population. That is, based on
electrophysiological (21) and optical imaging evidence (14, 22),
we infer that, within a single disparity domain, nearby binocular
neurons have similar preferred disparities but a range of prefer-
ences for other parameters including spatial scale, receptive field
size, and preferred phase disparity. With the existence of a func-
tional architecture for disparity, the pooling operations will be
much simpler to implement. Application of an additional layer of
pooling could further reduce aRDS responses. It is known that
neurons with broader spatial frequency tuning and larger re-
ceptive fields in V4 are better at discarding false matches (23).
Twenty percent of the neurons in V4 vs. almost 100% of neurons
in IT effectively discard false matching (11, 12). This could be
explained by integration of multiple V2 neurons from the same
disparity domain with different orientations, spatial scales, and
spatial locations, as proposed by computational models (8, 9).
However, it is unclear whether these single neurons in V4 and IT
with responses to aRDS further suppressed pooled inputs in that
manner. This can be tested in future studies using functional
imaging-guided, simultaneous single-unit recordings from multi-
ple cortical areas.
The optical imaging method can record from relatively large

fields of view (several millimeters to a few centimeters), making
it ideal for simultaneously studying multiple cortical areas at
mesoscale spatial resolution. However, the possibility remains
that weaker responses, such as that to aRDSs, may fall below the
noise threshold of optical signals. To examine this possibility,
we acquired optical imaging data with low contrast (12.5%), a
contrast that reduces single-unit responses by more than half
compared with high-contrast (100%) cRDSs. We found that
correct prediction rates in V2 increased over time with a slope
significantly greater than zero (Fig. S4D, P = 7.86 × 10−5, slope =
2.96%/s, r = 0.40), similar to the same upward drift observed with

high-contrast cRDSs (Fig. S4C, P = 1.70 × 10−5, slope = 2.97%/s,
r = 0.42). These results suggest that the sensitivity of the opti-
cal imaging method and the pattern classification method is
sufficient to detect weak responses. We also applied pattern
classification to V2 images obtained in response to two different
horizontal disparities. A “better than chance levels” performance
(Fig. 1D, 81.9 ± 4.6%, green bar, P = 0.002) was found, one that
was only slightly less than the awake subject’s psychophysical
performance (Fig. 1C, green bar). This remaining difference
could be contributed by factors such as feedback influences from
higher cortical areas beyond V2. Alternatively, such differences
could be due to the population-based nature of the intrinsic
optical imaging method (24). That is, the population will include
neurons that respond to disparities above threshold with almost
100% reliability (25) as well as those that are less efficient in
cortical areas without a functional architecture for disparity [e.g.,
V1 (14, 26) as shown in Fig. S5]. Recent developments in mul-
tiphoton optical imaging techniques (27) in awake nonhuman
primates with cellular resolution may also provide direct links
between population- and single unit-based approaches.
In summary, the information necessary for binocular depth

perception may result via emergent properties of ensemble be-
havior. We demonstrate, with direct experimental evidence from
both awake and anesthetized monkeys, that the integration of
neuronal signals across a population may help to achieve bin-
ocular correspondence. We show that V2 could be a critical stage
for solving the binocular correspondence problem. We suggest
that the transformation from physical stimulus to perception
begins to happen in V2 and might be inherited by higher cortical
areas in both the dorsal and ventral pathways where complex 3D
percepts are generated (11–13).

Materials and Methods
All surgical and experimental procedures were in accordance with protocols
conforming to the guidelines of the National Institutes of Health and were
approved by the Institutional Animal Care and Use Committees of Vanderbilt
University and Zhejiang University, China.

Animal Preparation. Eight adult rhesus monkeys (Macaca mulatta) used in this
research were housed singly under a 12 h light, 12 h dark cycle. Both male and
female monkeys were used in our experiments. We did not detect any sig-
nificant differences between males and females. In anesthetized experiments,
animals were paralyzed with vercuronium bromide (i.v., 50–100 μg·kg−1·h−1),
anesthetized (i.v., thiopental sodium, 1–2 mg·kg−1·h−1), and artificially venti-
lated. Throughout the experiment, the animal’s anesthetic depth and physi-
ological state were continuously monitored (EEG, end-tidal CO2, heart rate,
and regular testing for response to toe pinch). Craniotomy and durotomywere
performed to expose visual areas V1 and V2. Eyes were dilated (atropine
sulfate), refracted to focus on a monitor 76.2 cm from the eyes, and were
stabilized mechanically by attaching them to ring shape posts. A spot imaging
method and risley prisms were used to ensure continued eye convergence and
ocular stability (18). The border of V1 and V2 is determined by the existence of
ocular dominant stripes. In two monkeys, we conducted optical imaging in
the awake state. We implanted a headpost for head restraint and a 22-mm
diameter chamber over the visual cortex. Animals were under general anes-
thesia (1–2% isoflurane) in all surgical procedures.

Optical Imaging. Images of cortical reflectance change at the frame rate of
4 Hz and with 630-nm illumination were acquired by IMAGER 3001 (Optical
Imaging). Image acquisition included two frames before visual stimulus as
baseline and 14 frames during the stimulation. Two monkeys were trained to
perform a fixation task during the 4-s imaging period. Eye position was
monitored with an infrared eye tracker (RK-801, ISCAN, or iView X; Senso-
Motoric Instruments) in awake imaging sessions and, in anesthetized imaging
sessions, was checked before and after each imaging run with the spot im-
aging method (18). Runs with large eye movements were excluded in further
analysis. All conditions were pseudorandomly interleaved and were re-
peated at least 30 times.

Visual Stimulation. Visual stimuli were generated by custom software, with
luminance nonlinearities of the monitor corrected. Horizontal binocular
disparities were introduced by shifting the location of corresponding dots in
one eye relative to the other eye. The stereogram contained a dot size of
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0.085° × 0.085°, dot density of 100%, an 8.5° × 8.5° square background re-
gion maintained at zero disparity, and a 6.0° × 6.0° center portion with
offset dots. Our stimulus set consisted of RDSs with one of seven disparity
levels, 0.34°, 0.17°, 0.085° NEAR, zero, and 0.34°, 0.17°, 0.085° FAR. A new
dot pattern was presented every 100 ms. cRDS contains a global horizontal
shift between left and right eye patterns, and aRDSs were created with the
corresponding dots contrast-reversed. Patterns of RDS used in anesthetized
monkey imaging contained half of the dots dark (0.0 cd·m−2) and half of the
dots bright (80.0 cd·m−2) presented on a gray background (40.0 cd·m−2). In
the low-contrast RDS experiment, the luminance of the background was
kept the same (40.0 cd·m−2). The luminance of the dark dots and the bright
dots in patterns of RDS are 35.0 cd·m−2 and 45.0 cd·m−2, respectively. For
awake monkeys, we presented stimulation as red/green anaglyphs with
viewing distances of 118 or 140 cm from the eyes. The mean luminance of
the background was set to be 0.4 cd·m−2 after the red filter and 0.5 cd·m−2

after the green filter. The luminance of the red dots through the red filter
was 3.7 cd·m−2, and the luminance of the green dots through the green
filter was 2.0 cd·m−2. Through the opposite filter, the luminance of the red
dots and green dots was 0.4 cd·m−2 and 0.5 cd·m−2, respectively. The cross-
talk between the stereo images presented was close to zero.

Psychophysical Experiments. To confirm that our RDS stimuli were effective at
producing NEAR and FAR percepts, one monkey was trained to discriminate
the NEAR or FAR depth of the center portion of an RDS. Stimuli used in
discrimination tasks had the same dimension, dot density, and refresh rate as
in awake optical imaging sessions. The task was to discriminate between
NEAR and FAR and to, subsequently, after the offset of the stimulation,
make a saccadic eye movement to one of two targets, located 5° below
(correct response to NEAR) or above (correct response to FAR) the fixation
point. The level of binocular correlation in the RDS was adjusted by adding
random disparities to a fraction of the dots. Only cRDSs were used in the
training phase. After the monkey’s performance reached a plateau for each
level of binocular correlation, the animal was tested with interleaved pre-
sentation of 100% binocular cRDS and 100% binocular aRDS with disparity of
either 0.17° NEAR or 0.17° FAR. The monkey was rewarded randomly on 50%
of the trials during the testing phase. We used a binocular eye tracker (iView
X; SensoMotoric Instruments) to monitor the vergence state of the eyes.

Data Analysis and Statistics. Frames acquired between 1 and 3.5 s after the
stimulation onset were averaged and converted to reflectance change by
subtracting then dividing by the baseline frames on a pixel-by-pixel basis
with areas containing extensive vascular artifact excluded. Images were fil-
tered by a disk mean filter kernel with a radius of 80 μm to remove high-
frequency noise. Low-frequency noise was reduced by convolving the image

with an 800-μm radius mean filter kernel and subtracting the result from the
original image. Disparity differential maps were obtained by calculating the
average difference of filtered maps between stimulus conditions of 0.34°
NEAR and 0.34° FAR. NEAR and FAR domains were determined as areas
larger than 100 μm in diameter with significant activations (one-sided Stu-
dent’s t test, P < 0.05) based on a trial–trial comparison between the re-
sponses to 0.34° NEAR and 0.34° FAR defined by cRDSs and uncorrelated
RDSs, respectively.

For the pattern classification method (15), a depth decoder was trained to
classify inputs based on individual imaging trials (Fig. S1A). Output of the
decoder predicted the most likely stimulus. Responses within each element
(80 × 80 μm) were averaged without spatial filtering. An ensemble of linear
detectors (D12, . . ., Djk) calculated the weighted sum of elements, which were
determined from independent training data by a statistical learning algo-
rithm. Element weights were optimized so that each detector’s output was
+1 for its preferred stimulus and −1 for the nonpreferred. Once trained, the
classifier was used to predict a novel stimulus after training. A directed
acyclic graph (DAG) method (28) is used to determine the final prediction of
the most likely stimulus (Fig. S1B). DAG contains seven leaves to represent
seven disparities we tested (S1, . . ., S7) and 21 internal nodes (linear detectors
D12, . . ., D67). To make a prediction, starting at the root node D17, the linear
detector at the node is evaluated. The node exits via the left edge, if the
binary function is −1, or the right edge, if its output is +1. The linear de-
tector of the next node is then evaluated. The value of the predicted dis-
parity is the value associated with the final leaf node.

All data are expressed as mean ± SEM and are available on request.
Statistical differences over conditions or cases were determined using a two-
sided Student’s t test or a two-sided Wilcoxon signed rank test. Statistical
differences were considered to be significant for P < 0.05. Regression anal-
yses used robust linear regression with a least absolute residual method to
minimize the effect of outliners. Statistical analyses were performed with
Matlab software (The Mathworks). Multiple comparisons were adjusted with
Bonferroni correction, normality of the data was tested with a Lilliefors test,
and the equality of variance was determined with Levene’s test.
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