系统神经与认知科学研究所

INTERDISCIPLINARY INSTITUTE OF NEUROSCIENCE AND TECHNOLOGY

师资队伍

INTERDISCIPLINARY INSTITUTE OF NEUROSCIENCE AND TECHNOLOGY

7T 团队

7T 磁共振成像平台

研究生招生

欢迎加入我们

2023年4月,国际知名学术平台Research.com发布了2023年度全球顶尖科学家排名。浙江大学系统神经与认知科学研究所Anna Wang Roe(王菁)教授入选“Best Neuroscience Scientists in China”,特此向Anna Wang Roe教授表示祝贺!



排名发布网址:

https://research.com/scientists-rankings/neuroscience/cn


2ca1d8a9fd82fbddff32828282820de.png



Research.com 简介

作为全球领先的学术研究门户网站之一, Research.com提供自2014年以来有关科学贡献的可靠数据。其前身为Guide2Research,自2022年2月起改版为Research.com,每年发布最佳科学家排名。

学者入选顶尖科学家排名要基于D-index、在特定研究领域内的贡献比例以及研究人员的奖项和成就。D-index(学科H-index)学者排名指标,仅包括被调查学科的论文和引用值。D-index可细分为化学,电脑科学,数学,法律,材料科学等26个领域。

Research.com对神经科学领域约27400位研究人员进行了分析,该领域顶尖研究学者排名中包括107位在中国单位任职的学者。

本次排名是Research.com改版后第二次发布,基于包括OpenAlex和CrossRef在内的各种数据来源进行评选,用于估计引文指标的文献计量学数据截至2022年12月21日。





来源 | Research.com

编辑 | 史佳鑫



2023-06-08 了解更多

    2022928日,浙江大学医学院系统神经与认知科学研究所召开了秋季第一次PI会议,会议上王菁所长对白瑞良研究员获得国自然优秀青年科学基金项目(优青)表示了热烈祝贺。  


ed1c9f6dc01cccae6cf09470f7e5582.jpg     006a457cae977b9c03a6677852f5222.jpg

1:王菁所长与白瑞良研究员亲切交流

个人简介:

        图片1.png 

    白瑞良,男,1987年出生,中共党员,博士毕业于美国马里兰大学,现任浙江大学医学院系统神经与认知科学研究所研究员。白瑞良博士长期致力于脑循环功能的磁共振成像技术,在跨学科的前沿研究中,突破了磁共振成像对脑循环功能中关键水分子跨膜运输过程的分不清测不准技术瓶颈,成功实现了水分子跨膜运输磁共振成像技术在脑科学及脑医学方面的应用转化,为脑胶质瘤、阿尔茨海默症等脑疾病的精准诊断提供了先进的影像学工具,形成了自己鲜明的研究特色,取得了一系列学术成果,已发表第一作者/通讯作者SCI论文20余篇(Nature Biomedical Engineering PNASMedical Image AnalysisNeuroimage 等),其他SCI论文20余篇,申请发明专利10余项。白瑞良博士的研究得到了国际学术界的高度认可,包括(1荣获了首届中国生物物理学会生物磁共振分会青年创新奖2021);(2当选了国际医学磁共振协会青年会士ISMRM Junior Fellow,全球每年大约十人,2017);(3)摘取了首届海外华人医学磁共振协会青年科学家荣誉(第一名,2016);(4)获得了国际医学磁共振协会年会杰出论文奖(入选率<2%3次,优秀论文奖(入选率<5%1次,特邀报告4次,会议口头报告5次;(5获得了包括国自然优秀青年科学基金项目(主持)科技部科技创新2030”重大专项青年科学家项目(主持)、浙江省自然科学基金杰出青年项目(主持)、国自然面上项目(主持)等项目资助;(6)相关研究被NIH官网、Medical Express等国内外媒体多次报道。

    再次祝贺白瑞良研究员获得国自然优秀青年科学基金项目,也祝系统所未来产出更多的科研硕果,为中国系统神经生物学领域贡献力量!

        

附:

    白瑞良研究员领导的“定量神经影像实验室”长期招收博士后,如有兴趣,请直接联系白瑞良研究员

    邮箱:ruiliangbai@zju.edn.cn

    个人主页:https://person.zju.edu.cn/Bai_Lab


2022-09-29 了解更多
`
2023-06-07 了解更多
2022-06-02 了解更多
2021-05-27 了解更多
2023-05-30 了解更多
2023-05-29 了解更多
2023-05-19 了解更多

202353日,浙江大学医学院系统神经与认知科学研究所奚望副研究员Anna Wang Roe教授团队在Cell Reports在线发表题为“Single-microvessel occlusion produces lamina-specific microvascular flow vasodynamics and signs of neurodegenerative change” 的研究论文。该研究提出利用PLP血栓方法构建精准可控的微缺血模型,揭示了毛细血管血栓情况下的微血管网络的血流特征以及血管和神经元的精密联系,进一步拓展了对大脑皮层微血管在潜在的生理或病理的脑血流调控和神经退行性改变中的重要作用机制的了解。

原文链接https://www.cell.com/cell-reports/fulltext/S2211-1247(23)00480-1

 

大脑的正常功能与稳态维持依赖于复杂且高度互连的脑血管网络内血流的持续和正确输送。而血流的非正常扰动会影响大脑功能的维持,可导致神经元应激级联反应、炎症和细胞损伤,与微梗死和神经退行性疾病紧密相关。尽管已进行大量相关研究,但对微血管层面的微小病变及其对邻近组织的血液动力学和神经活动的影响还知之甚少。

研究团队通过前期工作建立了结合1070 nm激光与螺旋式扫描方法为核心的精准光血栓方法(precision ultrafast laser-induced photothrombosisPLP),激发形成了高效,安全且具有高度空间精准度的玫瑰红光活化诱导的光血栓。基于PLP方法,实现了在活体动物脑皮层内任意深度(0-815 μm)的各种尺寸血管的精确可控的血栓,为研究脑血管疾病和缺血性中风提供了一种实用和准确的血栓模型。


图片1.png 

1. PLP 方法诱导的光血栓形成的示意图

 

为了进一步研究微血管缺血是如何影响皮层血流以及功能变化,我们利用PLP方法构建了不同程度的局部微缺血模型,以期望揭示血管功能障碍下的血流重塑和功能变化机制,并推动神经血管耦合的精确时空关系以及缺血性中风发生和治疗机制的研究。通过单根毛细血管血栓的构建,量化研究了局部血管网络内血流动力学和拓扑结构的急性改变,揭示了局部血管网络的血流急性分配机制。血栓的毛细血管可能导致局部血流阻力逐渐恶化,从而限制下游缺血区域内的血液微循环。血管网络应对这种血栓性改变和可能的缺血性风险则是依赖于通过上游血管的血流重新分配,上游旁支血管的血流增加,以及下游新血流灌注通路的形成,从而挽救缺血区域以保证组织的正常需求。


图片2.png 

2. 单根毛细血管血栓后局部血管网络的血流动力学变化

 

随后进行了血栓后的持续追踪观察,探索了毛细血管血栓后的病理学改变以及长期的恢复机制和可塑性变化。结果表明血脑屏障的损伤渗漏是毛细血管在血栓后发生时间相对较晚的事件,并且大多在血栓位置的下游血管中观测到。因此在体内观察到的毛细血管血脑屏障损伤造成的功能障碍可能预示着上游血管的功能异常,并且可能导致梗塞的扩大,可能会加剧小血管疾病和神经退行性改变疾病的发生。同时,大多数毛细血管在 48-72 小时内恢复血流,表明大脑存在一种有效的策略可以在血栓后几天内进行毛细血管级别的血流重塑,并伴有血管形态的改变,这可能涉及到脑组织自身的稳态维持和修复机制。

为了探究局灶性的缺血和神经退行性改变的关联,本研究还通过构建精准可控的局部微缺血模型。结果表明完整的毛细血管血流灌注对于神经元的正常结构和功能的维持是至关重要的。单根毛细血管引起的灌注不足对神经元的影响是有限的,但邻近的数根毛细血管的血流完全阻断会导致更严重的缺血,可能在在数小时内对缺血核心内的神经元造成持续的破坏性打击,远端树突最先发生病理性改变,最终造成神经元功能损伤和退行性改变。


 图片3.png

3. 局灶性缺血诱发了缺血核心内的神经元的损伤以及退行性改变

 

此外,本研究还通过对不同脑皮层的特定毛细血管前小动脉的血栓构建,揭示了层级间血流的分配差异性,展现了层级特异的血流代偿和灌注通路。结果表明在毛细血管前小动脉栓塞造成缺血事件期间,Layer 2/3 具有相对薄弱的血流调节机制,毛细血管的拓扑网络和血流动力学机制不足以在此层面形成完善的血流代偿,而 Layer 4 具有更强大的血流代偿,在血栓后能立即形成新的血流通路,形成新的血流分配。



图片4.png 

4. 位于两个不同皮层的毛细血管前小动脉血栓引发了层级差异性的血流分配

 

综上所述,本研究补充了过去专注于大面积缺血性和出血性破坏的工作。通过微缺血模型的构建,揭示了微血管网络的新的血流特征以及血管和神经元的精密联系。了解潜在的生理或病理的脑血流灌注系统及其机制,特别是微小血管病变的急性生长演化过程,对于解析健康和疾病中的大脑功能及神经血管耦合机制,神经可塑性改变的潜在机制至关重要,也是开发缺血性中风及其关联的神经退行性疾病后出现的血流控制缺陷的治疗方式的先决条件。



图片5.png 

图:微血管血栓诱发局部血流调控变化以及和相关联的神经退行性改变

1. 单根毛细血管血栓导致快速的局部血流自动调节

2. 局灶性毛细血管血栓引起神经元退行性改变

3. 微血管血栓产生层级特异性的血流动力学改变

 


浙江大学奚望副教授Anna Wang Roe教授为本文的共同通讯作者,浙江大学生仪学院博士生朱亮为本文第一作者。该研究获得了科技部科技创新2030“脑科学与类脑研究重大项目,国家自然科学基金,浙江省领雁计划,浙江省自然科学基金,中央高校基本科研基金等基金资助,以及浙江大学脑与脑机融合前沿科学中心、浙江大学生物医学工程教育部重点实验室等大力支持。


来源 | 奚望课题组
编辑 | 史佳鑫


2023-05-15 了解更多

2023年4月20日,浙江大学医学院系统神经与认知科学研究所王朗课题组与基础医学院谷岩课题组合作的研究论文“GRM2 regulates functional integration of adult-born DGCs by paradoxically modulating MEK/ERK1/2 pathway”作为本期Journal of Neuroscience封面文章正式上线发表,揭示了2型代谢型谷氨酸受体(GRM2)通过MEK/ERK1/2信号通路调控成体海马新生神经元的发育及功能整合的分子机制马骄胡哲纯为论文共同第一作者。

原文链接:https://doi.org/10.1523/JNEUROSCI.1886-22.2023 


成体神经发生是指哺乳动物中枢神经系统在成年后仍然能够持续产生新生神经元的现象,主要存在于侧脑室下区(SVZ)和海马齿状回颗粒层下区(SGZ。在成年大脑海马齿状回中产生的新生神经元经过大约4周的发育,原有的海马神经环路进行突触整合,从而发挥其生理功能。以往的研究表明,成体海马神经发生对海马相关的认知功能情绪调节中发挥重要作用。此外,成体新生神经元的发育异常也与多种神经系统疾病所伴随的认知功能障碍密切相关。因此,探究成体海马新生神经元发育及功能整合的调控机制对于深入理解成体神经发生的生理功能是必不可少的关键环节,并有助于寻找海马相关认知功能障碍的干预靶点。

2型代谢型谷氨酸受体(GRM2/mGluR2)属于G蛋白偶联受体家族GRM2的激活可以抑制神经元兴奋性和神经元轴突末梢的递质释放,从而参与调控突触传递和突触可塑性。研究表明,癫痫和阿尔兹海默症等神经系统疾病中GRM2在脑内的表达均有显著变化。在海马齿状回颗粒神经元中GRM2具有特异性高表达。以往的研究表明,海马成体新生神经元在发育到4周时,其轴突末梢突触传递可以被GRM2/3激动剂抑制,表明这时的新生已经表达较高水平的GRM2,具有和原有的成熟齿状回颗粒神经元相同的生理特性。然而,GRM2何时在新生神经元中开始表达,以及是否参与调控新生神经元的发育整合并进而调控海马依赖性认知功能尚不清楚。

研究人员首先通过RNA-scope方法确定GRM2在海马新生神经元和成熟神经元中的表达水平存在差异(图1A)。利用逆转录病毒特异性标记结合单细胞qRT-PCR的方法,作者阐明了GRM2在成体新生神经元中的表达发育谱线(图1B)。特异性敲降成体海马新生神经元中的Grm2后,作者发现神经元树突的总长度、分支数目及复杂程度均显著降低(图1C-F)。这一结果表明GRM2的表达是成体海马新生神经元正常形态发育的必要条件。


图片7.png 

图1. 特异性敲降Grm2抑制成体海马新生神经元的形态发育

 

研究人员进一步发现,敲降Grm2抑制了新生神经元树突棘的形成(图2A-C),并显著降低了新生神经元mEPSCs的频率(图2D-H)。同时,敲降Grm2也显著减少了新生神经元轴突末梢膨大的面积(图2I, J)。这些结果表明GRM2对于成体海马新生神经元在已有神经环路中进行树突与轴突的功能整合至关重要。


 图片8.png

图2. 敲降Grm2抑制成体海马新生神经元的突触整合


为了进一步探究GRM2调控神经元发育的分子机制,在体外原代培养的小鼠海马神经元中敲降Grm2的表达,发现敲降Grm2激活了MEK/ERK1/2信号通路,引起pERK1/2和pMEK水平升高(图3A-E),并引起pERK1/2的入核(图3F-G)。同时,研究人员还发现在体外培养的海马神经元中用药物激活MEK/ERK1/2通路可以模拟敲降Grm2后pERK1/2磷酸化水平的增加和神经元发育障碍(图3H-K)。



 图片9.png

3. 敲降Grm2激活MEK/ERK1/2信号通路


在成体海马新生神经元中敲降Grm2的同时,利用dnMapk1抑制MEK/ERK1/2信号通路的过度激活,则能够挽救因敲降Grm2导致的神经元发育障碍(图4A-E),以及小鼠认知功能缺陷(图4F-H)。因此,以上研究结果表明,GRM2通过调节成体海马新生神经元的发育与整合,进而调控海马依赖性的认知功能。



 图片9.png

4. 敲降Grm2导致海马依赖性认知功能障碍及挽救


综合以上实验结果,该研究发现了GRM2调控成体新生神经元发育和整合的分子机制,揭示了GRM2表达的降低导致MEK/ERK1/2信号通路的异常激活,从而导致新生神经元的发育缺陷。因此,GRM2除了参与调控海马齿状回成熟颗粒神经元的突触传递与可塑性,对新生神经元的发育过程也有重要的调控作用。这项研究揭示了成体海马新生神经元发育的一种新的内在调控机制,同时也为海马依赖的特定认知功能障碍的治疗提供了潜在的药物靶点。


浙江大学医学院系统神经与认知科学研究所王朗副研究员与基础医学院谷岩教授为本文共同通讯作者;博士研究生马骄博士后胡哲纯共同第一作者。本研究受到了科技部重点研发计划、国家自然科学基金、浙江省自然科学基金等多项目资助。


来源 | 王朗课题组
编辑 | 史佳鑫



2023-04-20 了解更多

2023年4月6日,浙江大学白瑞良团队联合山东省立医院刘英超团队在Journal of Magnetic Resonance Imaging杂志在线发表了最新研究成果:The Consistence of Dynamic Contrast-Enhanced MRI and Filter-Exchange Imaging in Measuring Water Exchange Across the Blood–Brain Barrier in High-Grade Glioma,该文比较了白瑞良团队发明的无创血管水交换磁共振成像技术和动态对比增强磁共振成像技术,验证了两种成像方法在测量跨血脑屏障水交换速率方面的一致性。

原文链接:http://doi.org/10.1002/jmri.28729

 

血脑屏障(BBB)由内皮细胞,紧密连接蛋白,周细胞和星形胶质细胞尾足上的水通道蛋白-4(AQP4)等组成,其在将溶质和必需营养物质转移到大脑的过程中起重要作用。研究表明,许多脑部疾病,如中风、阿尔兹海默症、脑肿瘤等都与血脑屏障功能障碍有关。血脑屏障通透性是评价血脑屏障功能的重要生物标志物,在动态对比增强磁共振成像(DCE-MRI)中,通常以造影剂的血管转移速率来评价血脑屏障通透性。而跨血脑屏障水交换速率(WEXBBB)是一种新型的、比造影剂更加敏感的血脑屏障评估方法。本研究以高级别胶质瘤病人为研究对象,旨在评估通过基于造影剂的DCE-MRI方法和完全无创的VEXI方法测得的WEXBBB的一致性,从而交叉验证磁共振在测量WEXBBB方面的可靠性。

图片1.png

图1. VEXI技术和DCE-MRI测量跨血脑屏障水交换原理图

 

本研究通过对DCE-MRI时间信号曲线定量建模计算血管内外水交换速率(kbo),通过对VEXI交换时间(tm)-ADC曲线定量建模计算跨血脑屏障表观水交换速率(AXR BBB)。研究表明,相比于对侧正常脑白质区域(cNAWM),kbo和AXRBBB在肿瘤区域都有显著下降(图2),且相对kbo(肿瘤区域kbo除以cNAWM的kbo)和相对AXRBBB(肿瘤区域AXRBBB除以cNAWM的AXRBBB)之间没有显著相关性,表明这两个参数在测量跨血脑屏障水交换方面是类似的。


 图片2.png 

2. 肿瘤区域和对侧正常脑白质区域不同参数的比较

 

除此之外,该研究在去除肿瘤影响区域后分割了正常脑白质区域(NAWM)和正常脑灰质区域(NAGM),研究发现,NAWM的kbo和AXRBBB都显著高于NAGM的对应数值。将肿瘤区域,正常脑白质区域和正常脑灰质区域的kbo与AXRBBB进行相关性分析,发现两者之间有显著的相关性(图3)。

 

图片3.png 

3. 肿瘤区域、正常脑白质区域和正常脑灰质区域的kboAXRBBB之间的相关性分析

 

该研究发现通过DCE-MRI测量的kbo与通过VEXI测量的AXRBBB是相似的且具有显著相关性,证明了两种方法在测量跨血脑屏障水交换方面一致性和可靠性。

 

浙江大学博士生王泽君第一作者、山东齐鲁医院王宝为共同第一作者,浙江大学医学院、教育部脑与脑机融合前沿科学中心白瑞良教授通讯作者,山东省立医院刘英超教授共同通讯作者。本研究得到了国家自然科学基金、浙江省自然科学基金以及浙江大学教育部脑与脑机融合前沿科学中心等的资助。

 


图片4.png

白瑞良,浙江大学医学院教授、邵逸夫医院双聘教授、博士生导师。国家高层次青年人才、国家科技创新2030重点研发计划青年首席科学家、杭州市海外高层次人才。主要从事脑循环功能的磁共振成像技术及临床转化研究,已发表SCI论文40余篇,以第一作者/通讯作者发表在Nature Biomedical Engineering,PNAS,Medical Image Analysis,Neuroimage 等20余篇,申请发明专利10余项,荣获了首届中国生物物理学会生物磁共振分会青年创新奖、国际医学磁共振协会青年会士等学术荣誉。



图片5.png 

白瑞良教授研究团队合影


网站链接:https://person.zju.edu.cn/Bai_Lab 

网站二维码:

图片6.png 

 

来源 | 白瑞良课题组
编辑 | 史佳鑫


2023-04-20 了解更多

一、实验室简介

王菁(Anna Wang Roe):浙江大学医学院系统神经与认知科学研究所所长,教授,博导。近五年领导团队在Science Advances, PNAS, eLife, Neuroscientist, NeuroImage, Cerebral cortex等国际知名杂志发表一系列重要研究工作。并获得国自然重点项目、科技部重大项目、浙江省重点项目资助。实验室网站:www.ziint.zju.edu.cn.

 

二、实验室研究方向

(1)结合7T fMRI、光学成像、局部刺激手段研究非人灵长类介观尺度脑连接组;

(2)清醒行为猴中央凹对应脑区的视觉认知研究;

(3)幼年猴的杏仁核相关网络发育研究;

(4)定向介观尺度的脑机接口技术开发(包括电生理,光学成像,MRI,局部光、电刺激,磁共振物理)。

 

三、招聘条件

博士后岗位(若干名,长期招聘)

(1)已取得博士学位(生物学,医学,医学工程,计算机,数学,光学等相关领域);

(2)具有fMRI经验,熟悉 MRI分析平台(例如MatlabAFNI等);光学成像经验;双光子或三光子成像经验;电生理研究经验;脑内连接环路研究经验(符合其中之一即可);

(3)具有良好的科学素养、责任心和团队协作精神

 

四、岗位待遇:  

(1)工资及福利待遇按照浙江大学博士后相关规定执行,根据申请人具体条件浮动,视工作绩效课题组另外提供科研奖励,确保总体薪酬在同行业中具有足够的竞争力,根据应聘者能力及工作业绩发放额外奖金;

(2)提供优良的科研条件,支持申请国家自然科学基金、中国博士后科学基金项目等,符合条件可申请配套资助;

(3)可申请租住教师公寓(租赁价低于市场价)。


五、应聘材料

(1)个人简历(包括照片,教育背景,代表性工作,研究兴趣方向介绍);

(2)3封专家推荐信(可选)  

 请将个人材料发送至邮箱annawangroe@zju.edu.cn,邮件备注“Postdoc Application”


2022-05-04 了解更多

Higher Cognitive Functions Lab (PI: Hisashi Tanigawa, PhD) are currently seeking a postdoctoral fellow with a strong background in animal models of electrophysiology, who will conduct recoding neuronal activities using Electrocorticography (ECoG), Multi-electrode array (MEA), and Intrinsic Signal Optical Imaging (ISOI) from behaving monkeys’ cerebral cortex. The principal research goals include understanding of neural mechanisms underlying higher cognitive functions, including object recognition, attention, working memory, and long-term memory, and development of brain-machine interface (BMI) for such cognitive functions, in the macaque monkey cerebral cortex. The successful candidate is going to use our 256-channel TDT electrophysiology system (https://www.tdt.com/systems/neurophysiology-systems/)

See also our web page:

http://www.ziint.zju.edu.cn/index.php/Index/zindex.html?tid=0&userid=34

A suitable candidate will have experience in electrophysical and animal experiments, and a background in neurobiology/neuroscience. Basic programming skills (Matlab) are required. Experience in behaving monkey experiments and/or TDT electrophysiology system will be helpful, but not necessary. The candidate must be able to communicate in English (oral and written) and be willing to work with students and PhD students.

Salary and benefits are set according to the national and Zhejiang University regulations for postdoctoral fellows. The annual salary is generally 200,000-300,000 RMB, depending on your ability and experience. We will pay an additional bonus according to your performance. An apartment on the campus is available at a special price.

Interested candidates should send a CV, contact information of two references, and a statement of research interests (1 page) to Dr. Hisashi Tanigawa at hisashi@zju.edu.cn.

2022-04-13 了解更多

实验平台

  • 7T磁共振中心

  • 非人灵长类动物平台

  • 双光子显微镜平台

  • 高通量荧光显微镜平台

  • 射频线圈平台

  • 3D打印平台

  • 计算机集群平台

  • 病毒载体平台

  • 7T磁共振中心

  • 非人灵长类动物平台

  • 双光子显微镜平台

  • 高通量荧光显微镜平台

  • 射频线圈平台

  • 3D打印平台

  • 计算机集群平台

  • 病毒载体平台

科研团队

关于我们

ziint1.jpg

  浙江大学系统神经与认知科学研究所(Zhejiang University Interdisciplinary Institute of Neuroscience and Technology, ZIINT),ZIINT的成立主要为解决认知与行为神经科学领域的重大问题,探索脑高级功能的神经网络机制,在脑功能和脑疾病等相关研究中取得重大突破;为相关医学、神经科学、工程学以及其他领域交叉学科的沟通搭建了桥梁;同时致力于跨学科研究,将与各大医院紧密合作,促使科研成果产业化,真正的推动神经医学的发展。

  ZIINT目前拥有全国唯一主动屏蔽式7T超高场磁共振系统——“MAGNATOM 7T超高场磁共振仪”,以及活体双光子成像系统,全自动、高通量、高速荧光扫描系统等科学界公认的顶级神经科学及脑认知研究设备,已建成基础科研实验室15个,并配有多个公共实验平台来支持各个实验室的工作:包括非人灵长类动物平台、病毒载体制备平台、VS-120显微镜平台、双光子显微镜平台、3D打印平台、射频线圈平台、计算机集群平台和超高场磁共振成像平台等。

  ZIINT发展至今,已引进16名优秀人才,他们具有良好的学术素养和深厚的科研能力,所涉及的研究领域广泛。已获得国家杰出青年基金、基金委重大研究计划培育项目、国家自然科学基金项目、科技部973重大科学问题导向项目、国家863计划项目等基金项目共25项。本所自2014年招生以来,截至目前已招博士研究生34名,硕士研究生21名。同时每年举办高质量的交叉学科国际会议“Frontiers in Interdisciplinary Neuroscience and Technology”以及超高场磁共振“Asia-Pacific Symposium on Advances in UHF MRI”等会议,对于系统神经领域各交叉学科间研究成果、研究经验等的交流与共享提供了平台,进一步促进该领域的发展以及交叉学科间新领域的探索,同时我们与杭州市多家医院开展交流合作,直接促进了科研成果的转化。


z9.jpg

System neural and cognitive science research institutereturn

Login

The institute's official website to welcome you

Login