事件

我们的大脑怎样识别世界上多种形状的物体?神经科学家们提出的一个想法是:大脑中不同类型的神经元识别组成形状的不同基本元素,例如:直线,曲线和拐角,形状识别是这些基本元素信息整合的结果。然而,识别形状基本元素的神经元在功能图谱中的什么位置?这些神经元的信息怎样被整合?这些基本问题并没有被很好地研究和解决。


 图片1.png

 

上世纪60年代,诺贝尔奖得主“Hubel and Wiesel”发现:高等哺乳动物(猫和猴)初级视皮层的第一级信息处理单元是亚毫米尺寸的方位功能柱。他们的研究显示:每个方位功能柱的神经元处理某个特定的方位朝向(比如:垂直方位柱的神经元对树干的垂直轮廓起反应,但是对水平的树枝轮廓没有反应)。之后的研究发现:所有的方位柱(0-180度)系统地围绕一个中心点形成风车状的方位功能图谱。一个方位功能柱处理一种方位轮廓的概念已经成为感觉神经生物学的基石。

本项工作,两个研究团队合作开发了一种在方位图谱中高精度定位电极的新技术,因此每个方位功能柱中的不同区域都可以被精确探测。使用传统的内源信号光成像技术得到方位图谱之后,研究者可以在每个方位柱的不同部分系统且全面地研究神经元的不同功能特征。他们第一次发现:在一个方位功能柱内,不同功能偏好的神经元有清楚的分布规律。具体地讲:他们在方位功能柱内发现了三个亚区,分别对应编码直线,曲线和更复杂的轮廓(如拐角)。这表明:一个方位柱中包含构建形状的多种基本元素的编码。从而,这项研究引出了一个新的概念--风车中心的方位超柱处理单元。因此,他们的技术进步已经引入了观察方位功能柱和皮层功能组构的新视角。这一发现对于开发大脑中形状编码的计算模型也有重要的启发作用。

 图片2.png

原文链接: https://advances.sciencemag.org/content/5/6/eaaw0807


2019-06-06 READ MORE

我们的大脑怎样识别世界上多种形状的物体?神经科学家们提出的一个想法是:大脑中不同类型的神经元识别组成形状的不同基本元素,例如:直线,曲线和拐角,形状识别是这些基本元素信息整合的结果。然而,识别形状基本元素的神经元在功能图谱中的什么位置?这些神经元的信息怎样被整合?这些基本问题并没有被很好地研究和解决。


 图片1.png

 

上世纪60年代,诺贝尔奖得主“Hubel and Wiesel”发现:高等哺乳动物(猫和猴)初级视皮层的第一级信息处理单元是亚毫米尺寸的方位功能柱。他们的研究显示:每个方位功能柱的神经元处理某个特定的方位朝向(比如:垂直方位柱的神经元对树干的垂直轮廓起反应,但是对水平的树枝轮廓没有反应)。之后的研究发现:所有的方位柱(0-180度)系统地围绕一个中心点形成风车状的方位功能图谱。一个方位功能柱处理一种方位轮廓的概念已经成为感觉神经生物学的基石。

本项工作,两个研究团队合作开发了一种在方位图谱中高精度定位电极的新技术,因此每个方位功能柱中的不同区域都可以被精确探测。使用传统的内源信号光成像技术得到方位图谱之后,研究者可以在每个方位柱的不同部分系统且全面地研究神经元的不同功能特征。他们第一次发现:在一个方位功能柱内,不同功能偏好的神经元有清楚的分布规律。具体地讲:他们在方位功能柱内发现了三个亚区,分别对应编码直线,曲线和更复杂的轮廓(如拐角)。这表明:一个方位柱中包含构建形状的多种基本元素的编码。从而,这项研究引出了一个新的概念--风车中心的方位超柱处理单元。因此,他们的技术进步已经引入了观察方位功能柱和皮层功能组构的新视角。这一发现对于开发大脑中形状编码的计算模型也有重要的启发作用。

 图片2.png

原文链接: https://advances.sciencemag.org/content/5/6/eaaw0807


2019-06-06 READ MORE
2019-06-04 READ MORE

为给全国高校优秀大学生创建神经科学、生物医学、信息科学等交叉学科学术交流平台,提供与该领域专家教授交流的机会,帮助青年学生更好地了解当前学科发展热点问题,浙江大学系统神经与认知科学研究所定于2019710-12日在景色宜人的杭州举办2019年优秀大学生夏令营。

浙江大学系统神经与认知科学研究所(Zhejiang University Interdisciplinary Institute of Neuroscience and Technology, ZIINT)是由国家“千人计划”入选者,神经领域著名科学家Anna Wang Roe(王菁)教授于2013年在浙江大学华家池校区创立,以交叉学科、高度国际化为主要特色。ZIINT的成立主要为解决认知与行为神经科学领域的重大问题,探索脑高级功能的神经网络机制,在脑功能和脑疾病等相关研究中取得重大突破;为相关医学、神经科学、工程学以及其他领域交叉学科的沟通搭建了桥梁;同时致力于跨学科研究,通过与在浙知名医院紧密合作,真正的推动神经科学从实验室到临床应用的转化。

2020年系统神经与认知科学研究所研究生招生学科为:生物医学工程,神经生物学、人体解剖与组织胚胎学、影像医学与核医学、光学工程,欢迎考生跨学科报考。

一、申请资格

1.具有浓厚的科学研究兴趣,较强的科研能力,有志于生物医学工程、神经生物学等专业的研究,并有继续深造意向。

2.2020届本科毕业生,学业成绩优秀,满足母校“免试推荐”研究生标准,或有志参加全国研究生招生考试报考我所的三年级本科生。

3.英语良好,要求国家六级水平考试480分及以上(460-480分之间,在其他方面有突出表现的,也可予以考虑)或有较好的托福80分及以上)或雅思(5.5分及以上)成绩。

4.专业要求:神经生物学、生物医学工程、计算机科学、光学工程、生物技术、材料科学、信息电子工程、电子、电气、控制类等相关专业(包括医学、生物学、药学、数学、物理、化学等)三年级本科生(2020届毕业生)。

二、申请报名

     报名截止日期:201962317:00,请扫描微信二维码报名,填写相关报名信息。

             1560482539116938.png

三、材料审核及录取

1.专家小组审核相关材料后,择优录取25名营员,由浙江大学系统神经与认知科学研究所发放录取名单,录取名单将于626日前在系统神经与认知科学研究所网站上公布(http://www.ziint.zju.edu.cn/),请及时查看。

2.确认参加者请在630日前将回执返回(届时邮件通知)。

四、夏令营日程

本次活动内容包括专家讲座、实验室参观与实验操作、师生座谈等精彩活动。日程安排:

710日下午(13:30后):学员报道登记、安排住宿;

711-712日:专家讲座、实验室参观与实验操作、师生座谈、营员报告与优秀营员选拔。

五、资助条件

1.营员的食宿由研究所承担并统一安排,并为入选营员报销来杭单程车票(高铁二等座、火车硬座、汽车票),营员请自行预定车票,报销时须提供来程车票。

2.保险:研究所统一购买在浙大活动期间的团体意外保险。

六、注意事项:

1.参加暑期夏令营的学生必须遵守浙江大学的相关规定,按照统一安排参加活动,并注意安全;

2.由于实验室属于高洁净环境,确认参加者须进行结核菌测试(胸透),可经由胸片、皮测或血液等不同方法取得,须于72日前寄回电子版结核菌测试结果(fengxinwei@zju.edu.cn);

3.凡参加夏令营者,报到时须携带以下材料:

1)身份证及复印件;

2)申请表中所涉及的相关证书证明材料的原件;

3)英语六级成绩或其他外语成绩;

4)本科学习成绩总表原件。

七、联系方式:

1.浙江大学华家池校区科学楼203办公室,联系人:冯老师,邮箱fengxinwei@zju.edu.cn电话0571-86971735

2.系统神经与认知科学研究所网站:http://www.ziint.zju.edu.cn/

 

2019-05-30 READ MORE
2019-05-28 READ MORE
2019-05-23 READ MORE

2019年4月24日,研究所《科学 · 进展》杂志上在线发表了题为Focal infrared neural stimulation with high-field functional MRI: A rapid way to map mesoscale brain connectomesXu et al., Sci. Adv. 2019; 5 : eaau7046, DOI: 10.1126/sciadv.aau7046的文章,标志着研究所在脑网络研究方法上取得重大突破。他们开发的新技术INS-fMRI,首次将红外光刺激和磁共振成像结合在一起,这一全新的方法实现了在活体脑中快速系统地研究亚毫米级的脑连接组。

c1f6f5f8-7c2c-4e76-bb76-3235d91d3c04.jpg

为什么要绘制脑网络

正如人们出行时需要地图,理解大脑需要借助脑网络图谱。脑科学家探索大脑奥秘,进到脑内一座座“城市”中去,却没有完整的地图可以参考。然而信息从感觉输入,在脑内传递和处理,最终产生情绪和行为,这些都依赖于大量神经连接和脑网络。对于灵长类而言,绘制介观尺度的脑连接组尤为重要。这是因为灵长类大脑由功能柱整齐排布而成,每个功能柱(亚毫米级)恰好又对应特异的认知功能。因此,绘制介观尺度的脑网络,也就是弄清各个功能柱之间的连接,将极大地帮助我们理解灵长类(包括人类)大脑的工作原理以及脑疾病,将促进神经科学,心理学,医学和人工智能等领域的发展。

1d50c2a7-6660-45a1-8e02-e2773873f27e.jpg

现有方法不适用

想要绘制灵长类脑网络,现有的方法都有很大局限性。1)解剖学染色需要牺牲动物,注射位点少,制作大脑切片和图像重构非常费时。另外,结构连接并不是功能连接,就好像AB两座城市之间有路径相连,但不一定经常有汽车通行。2)静息态虽然可以研究脑区之间的相关性,但相关性不等于因果性。只有调节刺激某一个脑区,才能让有效连接发挥作用,引起相连区域的变化。3)刺激方法中,电刺激由于电流的扩散不能实现精准刺激。光遗传学方法虽然精准,但是需要转染病毒,转染效率不稳定,且在猴类中很难实施。

 

新方法 INS-fMRI 的原理

王菁教授团队最新开发的技术叫做 INS-fMRI 。它结合了聚焦红外光脉冲刺激(INS)以及超高场磁共振成像(fMRI)。红外光(波长1870纳米左右)脉冲被200微米直径的光纤照射到目标脑区,引起该脑区及相连脑区的神经反应。红外光之所以能够引起神经元反应的具体机制仍然没有定论。一种解释为热量被水分子吸收,改变细胞膜电容,最终引起神经元发放。也有人归因为神经元热敏蛋白通道的激活。且不论具体机制,多方面研究已经说明,一定能量的红外光脉冲可以激发或抑制神经元的活动。另一方面,基于血氧水平的超高场(7特斯拉)磁共振功能成像既可以研究全脑尺度各脑区的活跃程度,又可以使用高分辨率(亚毫米级)在小范围内研究各个功能柱以及皮层各个分层的活动。在这样的背景下,浙江大学团队将红外光这一刺激方法与功能核磁共振相结合,并完成了首次报道。

 

应用范例1:大尺度长程连接

Science Advances文章中,作者报道了两个应用范例,分别对应研究全脑尺度的长程连接,以及局部范围内的高分辨率短程连接。

 

在范例1中,光刺激被约束在猫右脑视觉皮层17-18区分界线附近一个亚毫米级区域。刺激引起了可重复并与激光强度相关的反应。其中:1、对侧左脑视觉区(18192021区)的次级反应体现的是大脑皮质与皮质之间的神经连接。2、右脑外侧膝状体的反应则反映的是大脑皮层与深部丘脑的连接。3、当激光强度由每平方厘米0.3焦耳增强到0.7焦耳时,激活区域仍相似,但连接位点的激活幅度和激活区域都有所增大。4、同时在高强度刺激下,作者观察到对侧丘脑的反应。这一现象很有可能是神经信号经过多个突触的传递而出现。也就是从右侧视觉区到左侧视觉区,再到左侧丘脑的传递。

 

总的来说,在这一范例中,连接位点与刺激位点距离遥远;反应在空间上精细、特异,与已知解剖学证据吻合。

 

1556154632.jpg

应用范例2:高分辨率短程连接

在范例2中,光脉冲被传递到松鼠猴负责触觉的躯体感知区,并激活几个极具特征的神经回路。其中,刺激中指在布罗德曼3b区的皮层,激活了其他手指在3b区的功能位点;也激活了中指在3a区,1区和2区的多个功能位点。这些回路具有特殊的行为学意义,因为不同手指获得的感觉需要经过整合来指导运动,例如抓取;而通过同一手指又能获得不同形式的触觉。


更有意思的是,在高分辨率的功能成像条件下(0.27x0.27x1.5毫米),作者观察到皮层不同分层的反应,从而能够区分从低级到高级脑区的前馈投射,和从高级到低级脑区的后馈投射。这一实验的刺激位点在布罗德曼2区。而连接位点一部分出现在M13a的中间层。另一部分出现在3b1区的表层和深层。通常到达中间层的为前馈投射,而到达非中间层的为后馈投射。所以这一结果几乎与前人的解剖学染色结果完全一致。也即2区前馈投射到3a,后馈投射到3b1区。因此INS-fMRI可以不牺牲动物,在活体实验中快速识别和区分前馈和后馈投射。

 

评价和展望

在两个案例中,作者证明了INS-fMRI方法研究脑网络的可行性。视觉系统实验中获得的有效连接与已知的远程连接吻合躯体感觉皮层研究中的精细短程连接也与前人的工作几乎完全一致。可以看出,这一方法具有多方面的优点

1. 活体。INS-fMRI可以在活体内研究有效连接,大大减少使用动物的数量。并且可以对动物持续进行跟踪研究,例如研究大脑发育。

2. 快速。实验结果可以快速地以三维形式呈现,在1-2小时的扫描中即可获得初步结果。

3. 精准。聚焦红外光脉冲的一个优点是将能量传递到极小的空间,实现精准刺激,并引起连接点反应的空间特异性。

4. 高分辨率。借助超高场磁共振实现的高分辨率,该方法可以研究单个大脑皮层功能柱的连接组,也可区分皮层不同分层的反应,继而识别前馈和后馈投射。

5. 可量化。连接强度可以经由血氧反应,量化为反应的幅度和相关性。

6. 系统性研究。该方法可以被用于系统性地逐个刺激皮层功能柱,从而全面地描绘灵长类介观水平连接组。

 

总之,这一方法的应用将可能帮助我们深入理解大脑的连接方式和工作原理,继而更好地理解疾病和精准调控相关脑结构和功能。

 

文章作者:

该文章的共同第一作者为科研助理徐国华和博士生钱美珍。通讯作者为张孝通博士,陈岗博士和王菁博士。

 

论文连接:https://advances.sciencemag.org/content/5/4/eaau7046

 

文章英文摘要:

 

We have developed a way to map brain-wide networks using focal pulsed infrared neural stimulation in ultrahigh-field magnetic resonance imaging (MRI). The patterns of connections revealed are similar to those of connections previously mapped with anatomical tract tracing methods. These include connections between cortex and subcortical locations and long-range cortico-cortical connections. Studies of local cortical connections reveal columnar-sized laminar activation, consistent with feed-forward and feedback projection signatures. This method is broadly applicable and can be applied to multiple areas of the brain in different species and across different MRI platforms. Systematic point-by-point application of this method may lead to fundamental advances in our understanding of brain connectomes.

2019-04-25 READ MORE

2019年4月24日,研究所《科学 · 进展》杂志上在线发表了题为Focal infrared neural stimulation with high-field functional MRI: A rapid way to map mesoscale brain connectomes(Xu et al., Sci. Adv. 2019; 5 : eaau7046, DOI: 10.1126/sciadv.aau7046)的文章,标志着研究所在脑网络研究方法上取得重大突破。他们开发的新技术INS-fMRI,首次将红外光刺激和磁共振成像结合在一起,这一全新的方法实现了在活体脑中快速系统地研究亚毫米级的脑连接组。


c1f6f5f8-7c2c-4e76-bb76-3235d91d3c04.jpg

为什么要绘制脑网络

正如人们出行时需要地图,理解大脑需要借助脑网络图谱。脑科学家探索大脑奥秘,进到脑内一座座“城市”中去,却没有完整的地图可以参考。然而信息从感觉输入,在脑内传递和处理,最终产生情绪和行为,这些都依赖于大量神经连接和脑网络。对于灵长类而言,绘制介观尺度的脑连接组尤为重要。这是因为灵长类大脑由功能柱整齐排布而成,每个功能柱(亚毫米级)恰好又对应特异的认知功能。因此,绘制介观尺度的脑网络,也就是弄清各个功能柱之间的连接,将极大地帮助我们理解灵长类(包括人类)大脑的工作原理以及脑疾病,将促进神经科学,心理学,医学和人工智能等领域的发展。

1d50c2a7-6660-45a1-8e02-e2773873f27e.jpg

现有方法不适用

想要绘制灵长类脑网络,现有的方法都有很大局限性。1)解剖学染色需要牺牲动物,注射位点少,制作大脑切片和图像重构非常费时。另外,结构连接并不是功能连接,就好像AB两座城市之间有路径相连,但不一定经常有汽车通行。2)静息态虽然可以研究脑区之间的相关性,但相关性不等于因果性。只有调节刺激某一个脑区,才能让有效连接发挥作用,引起相连区域的变化。3)刺激方法中,电刺激由于电流的扩散不能实现精准刺激。光遗传学方法虽然精准,但是需要转染病毒,转染效率不稳定,且在猴类中很难实施。

 

新方法 INS-fMRI 的原理

王菁教授团队最新开发的技术叫做 INS-fMRI 。它结合了聚焦红外光脉冲刺激(INS)以及超高场磁共振成像(fMRI)。红外光(波长1870纳米左右)脉冲被200微米直径的光纤照射到目标脑区,引起该脑区及相连脑区的神经反应。红外光之所以能够引起神经元反应的具体机制仍然没有定论。一种解释为热量被水分子吸收,改变细胞膜电容,最终引起神经元发放。也有人归因为神经元热敏蛋白通道的激活。且不论具体机制,多方面研究已经说明,一定能量的红外光脉冲可以激发或抑制神经元的活动。另一方面,基于血氧水平的超高场(7特斯拉)磁共振功能成像既可以研究全脑尺度各脑区的活跃程度,又可以使用高分辨率(亚毫米级)在小范围内研究各个功能柱以及皮层各个分层的活动。在这样的背景下,浙江大学团队将红外光这一刺激方法与功能核磁共振相结合,并完成了首次报道。

 

应用范例1:大尺度长程连接

Science Advances文章中,作者报道了两个应用范例,分别对应研究全脑尺度的长程连接,以及局部范围内的高分辨率短程连接。

 

在范例1中,光刺激被约束在猫右脑视觉皮层17-18区分界线附近一个亚毫米级区域。刺激引起了可重复并与激光强度相关的反应。其中:1、对侧左脑视觉区(18192021区)的次级反应体现的是大脑皮质与皮质之间的神经连接。2、右脑外侧膝状体的反应则反映的是大脑皮层与深部丘脑的连接。3、当激光强度由每平方厘米0.3焦耳增强到0.7焦耳时,激活区域仍相似,但连接位点的激活幅度和激活区域都有所增大。4、同时在高强度刺激下,作者观察到对侧丘脑的反应。这一现象很有可能是神经信号经过多个突触的传递而出现。也就是从右侧视觉区到左侧视觉区,再到左侧丘脑的传递。

 

总的来说,在这一范例中,连接位点与刺激位点距离遥远;反应在空间上精细、特异,与已知解剖学证据吻合。

 

1556154632.jpg

应用范例2:高分辨率短程连接

在范例2中,光脉冲被传递到松鼠猴负责触觉的躯体感知区,并激活几个极具特征的神经回路。其中,刺激中指在布罗德曼3b区的皮层,激活了其他手指在3b区的功能位点;也激活了中指在3a区,1区和2区的多个功能位点。这些回路具有特殊的行为学意义,因为不同手指获得的感觉需要经过整合来指导运动,例如抓取;而通过同一手指又能获得不同形式的触觉。


更有意思的是,在高分辨率的功能成像条件下(0.27x0.27x1.5毫米),作者观察到皮层不同分层的反应,从而能够区分从低级到高级脑区的前馈投射,和从高级到低级脑区的后馈投射。这一实验的刺激位点在布罗德曼2区。而连接位点一部分出现在M13a的中间层。另一部分出现在3b1区的表层和深层。通常到达中间层的为前馈投射,而到达非中间层的为后馈投射。所以这一结果几乎与前人的解剖学染色结果完全一致。也即2区前馈投射到3a,后馈投射到3b1区。因此INS-fMRI可以不牺牲动物,在活体实验中快速识别和区分前馈和后馈投射。

 

评价和展望

在两个案例中,作者证明了INS-fMRI方法研究脑网络的可行性。视觉系统实验中获得的有效连接与已知的远程连接吻合躯体感觉皮层研究中的精细短程连接也与前人的工作几乎完全一致。可以看出,这一方法具有多方面的优点

1. 活体。INS-fMRI可以在活体内研究有效连接,大大减少使用动物的数量。并且可以对动物持续进行跟踪研究,例如研究大脑发育。

2. 快速。实验结果可以快速地以三维形式呈现,在1-2小时的扫描中即可获得初步结果。

3. 精准。聚焦红外光脉冲的一个优点是将能量传递到极小的空间,实现精准刺激,并引起连接点反应的空间特异性。

4. 高分辨率。借助超高场磁共振实现的高分辨率,该方法可以研究单个大脑皮层功能柱的连接组,也可区分皮层不同分层的反应,继而识别前馈和后馈投射。

5. 可量化。连接强度可以经由血氧反应,量化为反应的幅度和相关性。

6. 系统性研究。该方法可以被用于系统性地逐个刺激皮层功能柱,从而全面地描绘灵长类介观水平连接组。

 

总之,这一方法的应用将可能帮助我们深入理解大脑的连接方式和工作原理,继而更好地理解疾病和精准调控相关脑结构和功能。

 

文章作者:

该文章的共同第一作者为科研助理徐国华和博士生钱美珍。通讯作者为张孝通博士,陈岗博士和王菁博士。

 

论文连接:https://advances.sciencemag.org/content/5/4/eaau7046

 

文章英文摘要:

 

We have developed a way to map brain-wide networks using focal pulsed infrared neural stimulation in ultrahigh-field magnetic resonance imaging (MRI). The patterns of connections revealed are similar to those of connections previously mapped with anatomical tract tracing methods. These include connections between cortex and subcortical locations and long-range cortico-cortical connections. Studies of local cortical connections reveal columnar-sized laminar activation, consistent with feed-forward and feedback projection signatures. This method is broadly applicable and can be applied to multiple areas of the brain in different species and across different MRI platforms. Systematic point-by-point application of this method may lead to fundamental advances in our understanding of brain connectomes.


2019-04-18 READ MORE
System neural and cognitive science research institutereturn

Login

The institute's official website to welcome you

Login