Welcome to ZIINT

INTERDISCIPLINARY INSTITUTE OF NEUROSCIENCE AND TECHNOLOGY

SHARED PLATFORM

   INTERDISCIPLINARY INSTITUTE OF NEUROSCIENCE AND TECHNOLOGY

7T TEAM

    INTERDISCIPLINARY INSTITUTE OF NEUROSCIENCE AND TECHNOLOGY

MAGNETOM 7T MRI

               INTERDISCIPLINARY INSTITUTE OF NEUROSCIENCE AND TECHNOLOGY

GRADUATE SCHOOL OF ZJU

WELCOME TO JOIN US

   INTERDISCIPLINARY INSTITUTE OF NEUROSCIENCE AND TECHNOLOGY

日前,由健康报社组织评选的2019年度中国十大医学科技新闻和国际十大医学科技新闻揭晓。据了解,健康报社已连续5年完成了国内外“双十大”医学科技新闻评选活动。由浙江大学医学院系统神经与认知科学研究所、求是高等研究院、医学院附属第二医院开展的活体脑中亚毫米级脑连接组研究入选“2019年度中国十大医学科技新闻”。

    该研究首次在活体脑获得亚毫米级的脑连接组,从而能够更快速、更系统、更清晰地看清大脑交通图,了解信息的传递轨迹。该方法可以被用于系统性地逐个刺激皮层功能柱,从而全面地描绘灵长类亚毫米水平连接组。新技术将为绘制高分辨率功能柱的全脑网络图奠定基础,开启了大规模全脑功能连接的研究大门。

    本次医学科技新闻评选采用数据检索和专家学者讨论评议相结合的方式,特别邀请爱思唯尔公司作为技术支持单位。 国内医学科技新闻部分,对《科学》《自然》《新英格兰医学杂志》等权威期刊和各专科排名靠前期刊进行检索,选取《健康报》《人民日报》《科技日报》等20多家国内主流媒体和门户网站报道过、以中国学者为主要完成人的医学科技新闻报道。另外,此次还面向各医疗机构、科研院所、大专院校进行项目征集。最后,136篇新闻列入备选条目。国际医学科技新闻部分,针对2019年重大医学科技进展和研究成果进行遴选,从众多权威期刊上遴选数千篇基础、临床和公共卫生领域的文章,从中根据公众关注程度和与健康相关原则,选择了69项原始研究成果列入备选条目。初评环节邀请国家卫生健康委科教司、中国疾病预防控制中心、军事科学院军事医学研究院、北京大学医学部、中国医学科学院信息所、中国中医科学院中药研究所、中华医学会、爱思唯尔医学事务部等机构专业人员参与。 终评环节特别邀请到国内基础医学、临床医学、公共卫生、中医药、药学等不同领域的多位专家学者,共同担任评选顾问。

2020-04-21 READ MORE

        记忆是大脑最重要的功能之一,神经科学家对记忆的研究已经有上百年的历史,并且在神经环 路、神经元、突触、分子等多个层面深入研究了记忆的机制。在我们的生活中,每时每刻都有新的记忆发生,但是我们的很多记忆信息都会逐渐被遗忘。那么遗忘是怎样发生的呢?100多年前,艾宾豪斯开启了对遗忘的研究,发现遗忘是随着时间逐渐发生的。但是遗忘的机制到目前为止还没有得到深入的研究。



浙江大学基础医学院谷岩研究员课题组和系统神经与认知科学研究所王朗副研究员课题组首次发现,用于免疫的小胶质细胞通过清除突触而引起记忆遗忘,进一步发现补体信号通路参与了小胶质细胞介导的遗忘,并且依赖于记忆印迹细胞的活动。这项研究于2月7日在国际顶级期刊《Science》在线发表。


1.jpg

在这项工作中,研究人员首先在小鼠上建立了记忆遗忘的行为学模型。在这个模型中,我们在训练箱里给小鼠一个电击刺激,当小鼠再次进入这个训练箱里时,小鼠因为回忆起电击刺激而表现出freezing,也就是静止不动的行为,这是小鼠的一种恐惧行为模式。当训练和测试之间的时间延长时,小鼠的freezing会减少,表明小鼠的记忆随时间的推移而发生了遗忘。


海马是记忆形成和存储的一个重要脑区。在这里,记忆信息被编码于一些神经元中,即记忆印迹细胞(engram cells)。这些神经元的重新激活对于相关记忆信息的提取是必要的。研究人员发现,遗忘的同时伴随着印迹细胞重新激活率的下降。


那么什么导致了印迹细胞的重新激活率的下降呢?研究人员注意到了大脑中的另一种细胞,小胶质细胞。小胶质细胞是脑内的免疫细胞,越来越多的研究表明,小胶质细胞不仅参与神经系统的免疫调控,而且对于神经系统发育、神经元活动以及突触可塑性都有重要的调控作用。当研究人员特异性地清除了脑内的小胶质细胞时,遗忘被抑制了,同时印迹细胞的重新激活率也不再出现下降。这些表明小胶质细胞参与了记忆的遗忘。


海马中的印迹细胞之间的突触连接被认为是记忆存储的基质。以前的研究表明,突触的弱化或缺失会导致遗忘。通过高分辨率成像,研究人员发现海马的小胶质细胞中,存在着神经元突触的成分,并且与小胶质细胞中的溶酶体共定位,表明成年海马中的小胶质细胞仍然具有吞噬突触结构的能力。当用米诺环素(minocycline)抑制小胶质细胞的吞噬作用时,遗忘被显著阻断。


与此同时,通过高分辨率成像,研究人员发现印迹细胞的一些树突棘上出现补体信号通路分子C1q的共定位,并且C1q与突触成分一起存在于小胶质细胞溶酶体中,提示补体途径可能介导了小胶质细胞对印迹细胞突触的清除。CD55是一种补体信号通路的抑制分子。因此,研究人员在不影响小胶质细胞的情况下,利用AAV将CD55特异性地引入到印迹细胞中来抑制补体通路,并且发现CD55的表达可以抑制遗忘,以及伴随的印迹细胞激活率的下降。



我们平时会有这样的生活经验,学习了新的知识需要不断的复习才不会忘记,但是这是为什么呢?研究人员利用药理遗传学的方法特异性地对印迹细胞的兴奋性活动进行了抑制,发现小胶质细胞对遗忘的调节依赖于记忆印迹细胞的活动,这表明不活跃的突触更加容易被小胶质细胞清除。因此,越不活跃的记忆信息越容易被遗忘。


此外,海马的齿状回可以不断产生新生的神经元,称为神经发生(neurogenesis)。根据报道,神经发生会导致海马神经回路中大量突触的变化,从而导致旧的记忆的遗忘。研究人员同时操纵了海马神经发生和小胶质细胞,发现小胶质细胞介导的突触清除既参与了神经发生引起的遗忘,也参与了和神经发生无关的记忆遗忘。


这项研究不仅证明了小胶质细胞在健康成年大脑中保留吞噬清除突触的能力,而且首次在概念上提出了小胶质细胞通过清除突触而引起记忆遗忘的观点。进一步的研究发现补体信号通路参与了小胶质细胞介导的遗忘,并且依赖于记忆印迹细胞的活动。另外这项研究也提供了证据表明小胶质细胞不仅参与神经发生引起的遗忘,而且参与了和神经发生无关的记忆遗忘,因此小胶质细胞介导的突触吞噬作用可能是大脑中介导遗忘的一种更为普遍的机制。


这项工作是浙江大学基础医学院的谷岩实验室和医学院系统神经与认知科学研究所的王朗实验室共同完成,谷岩和王朗是本文的共同通讯作者;浙江大学基础医学院的博士生王超和岳惠敏是本文的共同第一作者;本工作得到了浙大医学院的王良、王晓东、孙秉贵、史鹏等研究组的大力帮助和支持;本研究得到科技部国家重点研发计划、浙江省自然科学基金的资助。


2020-03-11 READ MORE
2020-01-10 READ MORE

为促进博士生学术交流,提高博士生的科研和创新能力,为生物医学工程相关学科领域的博士生搭建高水平的学术交流平台,浙江大学将于2019年10月25-27日在杭州举办“2019年全国生物医学工程博士生学术论坛”。本次活动由国务院学位委员会办公室和教育部学位管理与研究生教育司主办,浙江大学生物医学工程与仪器科学学院、浙江大学系统神经与认知科学研究所承办。论坛以加强博士生创新能力为宗旨,为生物医学工程领域内的博士生搭建高起点、高水平、最前沿的学术交流平台,以开阔视野、启迪才智、增强创新意识、提高学术和工程创新能力。现诚邀国内外各大高校优秀博士生于金秋十月齐聚杭州,探讨学术前沿,交流科研成果!

 

论坛主题与分论坛:

论坛主题围绕生物医学工程学科的前沿领域,分论坛包括:①生物医学传感与检测分论坛,②先进诊疗技术与智能医学仪器分论坛,③医学影像与神经工程分论坛,④医学大数据与人工智能的交叉分论坛。

 

邀请对象:

国内外生物医学工程等相关领域的在读博士生。同时欢迎医学、生命科学、信息科学等相关学科的在读博士生参加,特别欢迎西部高校和科研院所的在读博士生参加。国外的在读博士生仅限受邀代表报名。本论坛将为参会博士生提供在杭期间食宿。

参会博士生人数:100-120人

 

论坛形式:

国内外著名专家特邀报告、博士生学术报告与交流(口头报告、墙报、实物展示)及专家点评、浙江大学参观、企业参观等。

论坛将评选最佳报告奖、最佳墙报奖、最佳实物展示创意奖多种奖项。颁发证书与奖励。

 

论坛时间与地点:

论坛时间:2019年10月25-27日

论坛地点:浙江大学(玉泉校区)生物医学工程及仪器科学学院

会议日程简表如下:

时间

上午

下午

10月25日

报到

10月26日

开幕式、大会报告

分会报告

10月27日

分会报告、参观、交流、离会


报名流程:

1.阅读会议通知,下载摘要模板(下载地址及详细会议通知见浙江大学生仪学院院网http://www.cbeis.zju.edu.cn/,浙江大学系统神经与认知科学研究所官网http://www.ziint.zju.edu.cn/),请按模板准备摘要,语言为中文或英文,摘要300-500字,不超过2页。撰写要求:以目的、方法、结果、结论的结构书写,建议摘要图文并茂。

2. 请在2019年10月10日前将报名信息、投稿摘要、博士生学生证扫描件(或其他可证明博士生身份的材料)发送至论坛官方邮箱zju_bme2019@zju.edu.cn,提交材料标题格式为:姓名+学校+参会主题类别,收到材料后主办方会回复邮件确认。

3. 论坛组委会将根据报名人情况和投稿摘要情况,以邮件形式发送摘要录用通知,文稿未被录用的博士生将不再另行通知。报告类型将尽可能尊重报名人意愿,根据会议日程安排,组委会也可能调整部分报名人的报告类型。口头报告和墙报,及实物展示的具体要求见第二轮通知。

4.参会费用:对于摘要被录用的博士生,会议免收注册费、会议资料费,会议期间统一安排食宿(不收取费用),并报销城市间往返旅费(原则上为高铁或动车二等座、火车硬座或硬卧、客车等,不超过2000元。个别交通困难情况请与会务组联系解决)。受邀参加的国外博士生的差旅费报销一人一议。


投稿及联系邮箱:zju_bme2019@zju.edu.cn

联系人:黄运操老师 (0571-87952002)张伶俐老师(0571-87951249)



附件1. 摘要模板 (ZJU_BME2019).doc



2019-09-06 READ MORE
2019-07-05 READ MORE
2019-05-28 READ MORE
2018-10-11 READ MORE
2018-10-11 READ MORE

       记忆是大脑最重要的功能之一,神经科学家对记忆的研究已经有上百年的历史,并且在神经环 路、神经元、突触、分子等多个层面深入研究了记忆的机制。在我们的生活中,每时每刻都有新的记忆发生,但是我们的很多记忆信息都会逐渐被遗忘。那么遗忘是怎样发生的呢?100多年前,艾宾豪斯开启了对遗忘的研究,发现遗忘是随着时间逐渐发生的。但是遗忘的机制到目前为止还没有得到深入的研究。



浙江大学基础医学院谷岩研究员课题组和系统神经与认知科学研究所王朗副研究员课题组首次发现,用于免疫的小胶质细胞通过清除突触而引起记忆遗忘,进一步发现补体信号通路参与了小胶质细胞介导的遗忘,并且依赖于记忆印迹细胞的活动。这项研究于2月7日在国际顶级期刊《Science》在线发表。


1.jpg

在这项工作中,研究人员首先在小鼠上建立了记忆遗忘的行为学模型。在这个模型中,我们在训练箱里给小鼠一个电击刺激,当小鼠再次进入这个训练箱里时,小鼠因为回忆起电击刺激而表现出freezing,也就是静止不动的行为,这是小鼠的一种恐惧行为模式。当训练和测试之间的时间延长时,小鼠的freezing会减少,表明小鼠的记忆随时间的推移而发生了遗忘。


海马是记忆形成和存储的一个重要脑区。在这里,记忆信息被编码于一些神经元中,即记忆印迹细胞(engram cells)。这些神经元的重新激活对于相关记忆信息的提取是必要的。研究人员发现,遗忘的同时伴随着印迹细胞重新激活率的下降。


那么什么导致了印迹细胞的重新激活率的下降呢?研究人员注意到了大脑中的另一种细胞,小胶质细胞。小胶质细胞是脑内的免疫细胞,越来越多的研究表明,小胶质细胞不仅参与神经系统的免疫调控,而且对于神经系统发育、神经元活动以及突触可塑性都有重要的调控作用。当研究人员特异性地清除了脑内的小胶质细胞时,遗忘被抑制了,同时印迹细胞的重新激活率也不再出现下降。这些表明小胶质细胞参与了记忆的遗忘。


海马中的印迹细胞之间的突触连接被认为是记忆存储的基质。以前的研究表明,突触的弱化或缺失会导致遗忘。通过高分辨率成像,研究人员发现海马的小胶质细胞中,存在着神经元突触的成分,并且与小胶质细胞中的溶酶体共定位,表明成年海马中的小胶质细胞仍然具有吞噬突触结构的能力。当用米诺环素(minocycline)抑制小胶质细胞的吞噬作用时,遗忘被显著阻断。


与此同时,通过高分辨率成像,研究人员发现印迹细胞的一些树突棘上出现补体信号通路分子C1q的共定位,并且C1q与突触成分一起存在于小胶质细胞溶酶体中,提示补体途径可能介导了小胶质细胞对印迹细胞突触的清除。CD55是一种补体信号通路的抑制分子。因此,研究人员在不影响小胶质细胞的情况下,利用AAV将CD55特异性地引入到印迹细胞中来抑制补体通路,并且发现CD55的表达可以抑制遗忘,以及伴随的印迹细胞激活率的下降。



我们平时会有这样的生活经验,学习了新的知识需要不断的复习才不会忘记,但是这是为什么呢?研究人员利用药理遗传学的方法特异性地对印迹细胞的兴奋性活动进行了抑制,发现小胶质细胞对遗忘的调节依赖于记忆印迹细胞的活动,这表明不活跃的突触更加容易被小胶质细胞清除。因此,越不活跃的记忆信息越容易被遗忘。


此外,海马的齿状回可以不断产生新生的神经元,称为神经发生(neurogenesis)。根据报道,神经发生会导致海马神经回路中大量突触的变化,从而导致旧的记忆的遗忘。研究人员同时操纵了海马神经发生和小胶质细胞,发现小胶质细胞介导的突触清除既参与了神经发生引起的遗忘,也参与了和神经发生无关的记忆遗忘。


这项研究不仅证明了小胶质细胞在健康成年大脑中保留吞噬清除突触的能力,而且首次在概念上提出了小胶质细胞通过清除突触而引起记忆遗忘的观点。进一步的研究发现补体信号通路参与了小胶质细胞介导的遗忘,并且依赖于记忆印迹细胞的活动。另外这项研究也提供了证据表明小胶质细胞不仅参与神经发生引起的遗忘,而且参与了和神经发生无关的记忆遗忘,因此小胶质细胞介导的突触吞噬作用可能是大脑中介导遗忘的一种更为普遍的机制。


这项工作是浙江大学基础医学院的谷岩实验室和医学院系统神经与认知科学研究所的王朗实验室共同完成,谷岩和王朗是本文的共同通讯作者;浙江大学基础医学院的博士生王超和岳惠敏是本文的共同第一作者;本工作得到了浙大医学院的王良、王晓东、孙秉贵、史鹏等研究组的大力帮助和支持;本研究得到科技部国家重点研发计划、浙江省自然科学基金的资助。

2020-03-11 READ MORE

How do our brains enable us to see the many shapes of objects in the world? One idea posed by neuroscientists is that there are different types of neurons in the brain that recognize different elements of shape, such as straight lines, curves, and corners, and that shapes are the result of integrating these different basic elements. However, where these neurons are and how their information is integrated is not well understood. 


图片1.png  

  

In the late 1960s, Nobel Laureates Hubel and Wiesel discovered that the first stage of visual information processing in the cortex (primary visual cortex) contains submillimeter-sized functional units called orientation columns. They showed that each column contained neurons responsive to only a certain contour orientation (e.g. neurons in a ‘vertical’ orientation column would respond to the vertical contour of a tall tree but not to the contour of a horizontal tree branch). It was later discovered that the set of all possible orientation columns (0-180 deg) shifted systematically around a point in a ‘pinwheel-like’ fashion. This concept of a single orientation column encoding a single contour orientation has been a cornerstone of sensory systems neuroscience.


In this study, two research teams cooperated to develop a novel, highly precise method of targeting electrodes in the orientation column and accurately determinng their position, so that different regions within single orientation columns could be probed. Using intrinsic signal optical imaging to map the orientation columns, researchers conducted systematic and comprehensive study of the functional properties of neurons in different parts of individual orientation columns. For the first time, they found that within single orientation columns there is a clear distribution of neurons with different functional preferences. Specifically, they found three subdomains, whose functional responses were consistent with the encoding of straight lines, curves, and complex contours, respectively. This suggested that single orientation columns may contain multiple basic elements for building shapes and led to a new concept of the ‘pinwheel-centered orientation hypercolumn’. Thus, their technical advance has led to a new view of the orientation column and of cortical functional architecture. This new finding will also be useful for computational models of shape encoding in the brain.

 

图片2.png 

 

Online Paperhttps://advances.sciencemag.org/content/5/6/eaaw0807


2019-06-06 READ MORE

Columnar connectome: towards a mathematics of brain function

https://www.mitpressjournals.org/doi/abs/10.1162/netn_a_00088


Summary:

What makes the brain unique is its vast network of connections. It is the SYSTEMATIC PATTERNs of functional connections lead to behavior, thoughts, and feelings. This article proposes that there are common repeated patterns of connectivity and that these patterns can be represented mathematically. Such brain math opens doors to understanding biological thought, design of new targeted brain-machine interfaces, and a new generation of artificial intelligence.


Abstract

Understanding brain networks is important for many fields, including neuroscience, psychology, medicine, and artificial intelligence. To address this fundamental need, there are multiple ongoing connectome projects in the US, Europe, and Asia producing brain connection maps with resolutions at macro-, meso-, and micro-scales. This viewpoint focuses on the mesoscale connectome (the columnar connectome). Here, I summarize the need for such a connectome, a method for achieving such data rapidly on a largescale, and a proposal about how one might use such data to achieve a mathematics of brain function.

2019-05-07 READ MORE

浙江大学系统神经与认知科学研究所李新建/高利霞教授课题组招聘博士后

李新建/高利霞实验室招聘信息

浙江大学医学院-系统神经与认知科学研究所高利霞实验室和浙江大学第二附属医院李新建实验室联合招聘博士后。李新建研究员的特长是采用世界上最先进的钙成像技术(Inscopix)结合光遗传学、化学遗传学、电生理、组织学等现有生物学技术手段,在自由移动的小鼠(啮齿类)执行任务时进行单细胞水平的钙成像记录。高利霞研究员特长是以非人灵长类动物狨猴为模型,研究运动控制、叫声交流,声音编码以及人类神经精神疾病(如自闭症、抑郁症)的造模和神经环路研究等其研究成果分别发表于Nature、Cell、Neuron、Journal of Neuroscience, Cerebral Cortex 等国际顶尖期刊上。现实验室公开招聘博士后2-3名。

博士后岗位要求

1. 已获得博士学位,并有证明科研能力的相关论文或研究成果(年龄在35周岁以下);

2. 富有创新思维,能独立进行相关的课题研究,并具有较好的团队合作精神;

3. 具有较强的语言表达能力和沟通能力,良好的英语读写和交流能力;

4. 具有MATLAB或编程基础者优先考虑;

5. 工作勤奋、主动性强、敢于创新并接受挑战。

薪酬待遇:

参照国家博士后相关规定和浙江大学博士后相关规定执行(18-22万),课题组根据应聘人员能力和工作业绩额外发放奖金,为获聘者提供优厚的薪酬。学校有偿提供教师公寓(优惠价格租赁)、支持申请国家自然科学基金、支持申请“博新计划”、支持参加海外学术交流活动、出站的优秀博士后可推荐浙江大学正式教职岗位或国外名校深造机会。

联系方式:

申请者请将申请材料通过email发给高利霞研究员:lxgao10@zju.edu.cn,申请材料包括(1)CV,主要介绍对所从事课题做了哪些工作,(2)两位推荐人的联系方式(含博士导师)。


2020-01-08 READ MORE
2019-12-02 READ MORE

Recruiter: Dr. Hisashi Tanigawa

Email: hisashi@zju.edu.cn

Research Interest: Macaque monkey cerebral cortex, Attention, Working memory, Long-term memory, Object Recognition


We are currently seeking a postdoctoral fellow with a strong background in animal models of electrophysiology, who will conduct recoding neuronal activities using Electrocorticography (ECoG), Multi-electrode array (MEA), and Intrinsic Signal Optical Imaging (ISOI) from behaving monkeys’ cerebral cortex. The principal research goals include understanding of neural mechanisms underlying higher cognitive functions, including object recognition, attention, working memory, and long-term memory, and development of brain-machine interface (BMI) for such cognitive functions, in the macaque monkey cerebral cortex. The successful candidate is going to use our 256-channel TDT electrophysiology system (https://www.tdt.com/systems/neurophysiology-systems/).

See also our web page: http://www.ziint.zju.edu.cn/index.php/Index/zindex.html?tid=0&userid=34.


A suitable candidate must be an expert in electrophysiology, have extensive experience with animal experiment and a background in neurobiology/neuroscience. Basic programming skills (Matlab) are required. Experience in behaving monkey experiments, decoding analysis with multivariate pattern analysis (MVPA), and/or TDT electrophysiology system will be helpful, but not necessary. The candidate must be able to communicate in English (oral and written) and be willing to work with students and PhD students. Salary is competitive and commensurate with experience.

 

Salary and benefits are set according to the national and Zhejiang University regulations for post-doctoral associates. The annual salary is generally 160,000-200,000 RMB, depending on your ability and experience. We will pay an additional bonus according to your performance. An apartment on the campus is available at a special price.

 


Zhejiang University Interdisciplinary Institute of Neuroscience & Technology (ZIINT, http://www.ziint.zju.edu.cn) is home to 15 labs, an MRI center for human and nonhuman primate research, nonhuman primate facility, 2 photon and high throughput microscopy, computer cluster, and viral vector core. We foster an environment of exciting collaborative and interdisciplinary interaction. English is the common language; lectures and seminars are given in English.

 

Zhejiang University is located in Hangzhou, China, an hour by bullet train from Shanghai. Home to beautiful West Lake, Hangzhou is both a modern and a historical city, with an emphasis on culture and environment.

 

Interested candidates should send a CV, contact information of two references, and a statement of research interests (1 page) to Dr. Hisashi Tanigawa at hisashi@zju.edu.cn.


2019-09-18 READ MORE

SHARED FACILITY

  • Highfield MRI

  • Nonhuman Primate Facility

  • Two Photon Microscopy

  • High Throughput Microscopy

  • RF Coil

  • 3Dprinting and Machinng

  • Computer Cluster

  • Viral Vector Core

  • Highfield MRI

  • Nonhuman Primate Facility

  • Two Photon Microscopy

  • High Throughput Microscopy

  • RF Coil

  • 3Dprinting and Machinng

  • Computer Cluster

  • Viral Vector Core

THE TEAM

ABOUT US

Zhejiang University Interdisciplinary Institute of Neuroscience and Technology (ZIINT) was founded in 2013. The ultimate goal of ZIINT is to do fundamental researches in the field of cognitive and behavioral neuroscience, to explore the neural network mechanism of brain advanced function, and to achieve major breakthroughs in brain function and brain diseases. Another goal of ZIINT is to establish links for related disciplines in fields of medicine, neuroscience, engineering and other fields, and work closely with major industries and hospitals to develop new technologies for neuroscience studies and promote our fundamental researches for clinical translation.


Currently, ZIINT has the only actively shielded 7T Ultra-High field magnetic resonance system - the "MAGNATOM 7T" in China, and a live-two-photon imaging system, and also has the top neuroscience and brain cognitive research equipment with automatic, high-throughput, high-speed fluorescence scanning systems recognized by the scientific community, moreover the institute has established 25 basic research laboratories, and is equipped with multiple public experimental platforms to support each laboratories working.


Since the establishment of ZIINT, 16 outstanding PIs have been recruited, they have good academic literacy and profound research capacity, involving a wide range of research fields. A total of 35 funding projects have been awarded by the National Science Fund for Distinguished Young Scholars, the Fund Development Committee Major Research Project Nurturing Project, the National Natural Science Foundation of China, the 973 Scientific and Technological Problem - Oriented Project of the Ministry of Science and Technology, and the National 863 Program. Since our enrollment in 2014, we have already recruited 54 doctoral students and 28 master students. At the same time, high-quality cross-disciplinary international conferences such as "Frontiers in Interdisciplinary Neuroscience and Technology" and "Asia-Pacific Symposium on Advances in UHF MRI" high-field magnetic resonance and other meetings are held each year. The sharing of research experience and technology provides an international front-line communication platform to further promote the development of the field and the exploration of new fields in cross-disciplines. At the same time, we conduct collaboration program with a number of hospitals in Hangzhou to directly promote scientific research achievements conversion.


QQ图片20180402144718.jpg

System neural and cognitive science research institutereturn

Login

The institute's official website to welcome you

Login