高级认知功能实验室

研究目标:

实验室的研究目标是在灵长类大脑皮层中探索高级认知功能(如物体识别,注意,工作记忆,长时程记忆)背后的神经机制。参与视觉加工的大脑区域按照一定等级排列,每个区域内又具有特定的功能模块结构(功能区或功能柱)。尽管高级视皮层以及联合皮层在大脑的高级认知功能中发挥了重要作用,与较初级的视皮层(如V1和V2)相比,这些区域的功能结构依旧缺乏研究。我们正着手于研究猕猴腹侧视觉通路V4区到TE区(这些区域在物体识别中发挥重要作用),以及前额叶皮层(prefrontal cortex,PFC,负责认知与执行控制)的功能和解剖结构。实验室将在猕猴上采用多种实验技术(包括内源信号光学成像ISOI,脑皮层电图ECoG,多电极阵列记录MEA,神经示踪)开展这些研究工作。


关键技术:

(1) 内源信号光学成像 (ISOI)

   本实验室所采用的一项关键技术是ISOI。ISOI是利用特定波长的光照射暴露皮层,并记录皮层表面光反射强度的变化,以此呈现出与神经活动有关的皮层血液动力学信号,且信号的分辨率能达到功能柱水平(约50微米)。本实验室采用此项技术,成功地展示了猕猴视皮层的功能结构 [1-4]。由于此技术需要暴露出皮层表面,因此可以与许多创伤性研究手段(如ECoG、MEA以及神经示踪)相结合。

(2) 脑皮层电图(ECoG)

   ECoG可记录到大脑皮层表面的局部场电位(local field potentials, LFPs),长久以来是评估病人癫痫病灶不可或缺的重要工具。由于此技术能实现高通道数据的采集,再结合高通道数据数学分析手段,ECoG技术已成为研究大脑功能,尤其是脑内神经振荡活动的重要工具;此外,对于脑机接口(brain-machine interface, BMI)而言,EcoG也被认为是一项极具应用前景的技术。通过ECoG技术,本实验室探索了猕猴内颞叶(medial temporal lobe, MTL)中与长程记忆有关的功能结构及其可塑性 [5]。

(3) 多电极阵列(MEA)记录

   一个典型的MEA中包含多个穿刺电极,可记录亦可刺激所处的大脑位点。在ISOI和ECoG记录后,我们将在皮层中植入多个MEA,从单细胞水平来研究功能结构的神经特性。 

(4) 神经示踪

   神经示踪是一项从解剖学角度展示脑组织中神经连接的技术。通常先将神经示踪剂注射到活体动物的大脑内,示踪剂被神经元吸收,并通过轴突进行运输传递。顺行示踪剂是由细胞胞体运输到轴突末端,逆行示踪剂则是由轴突末端运输到胞体。注射一段时间后,用固定剂对动物进行灌流取脑,脑组织经过切片,组织化学处理即可呈现出示踪剂的位置分布。本实验室利用神经示踪剂详细研究了颞下回(inferior temporal cortex, ITC)内在的解剖网络 [6-8]。


We are currently seeking postdoctoral fellows!


发表论文

[1] Tanigawa H, Chen G, Roe AW (2016) Spatial Distribution of Attentional Modulation at Columnar Resolution in Macaque Area V4. Frontiers in Neural Circuits. 10:1–13. Link

[2] Tanigawa H, Lu HD, Roe AW (2010) Functional organization for color and orientation in macaque V4. Nature Neuroscience. 13:1542–1548. Link

[3] Chen G, Lu HD, Tanigawa H, Roe AW (2017) Solving visual correspondence between the two eyes via domain-based population encoding in nonhuman primates. Proc Natl Acad Sci USA. 114:13024–13029. Link

[4] Lu HD, Chen G, Tanigawa H, Roe AW (2010) A Motion Direction Map in Macaque V2. Neuron. 68:1002–1013. Link

[5] Nakahara K et al. (2016) Associative-memory representations emerge as shared spatial patterns of theta activity spanning the primate temporal cortex. Nature Communications. 7:11827:1–9. Link

[6] Wang Q, Tanigawa H (co-first author), Fujita I (2017) Postnatal Development of Intrinsic Horizontal Axons in Macaque Inferior Temporal and Primary Visual Cortices. Cerebral Cortex. 27:2708–2726. Link

[7] Tanigawa H, Wang Q, Fujita I (2005) Organization of Horizontal Axons in the Inferior Temporal Cortex and Primary Visual Cortex of the Macaque Monkey. Cerebral Cortex. 15:1887–1899. Link

[8] Tanigawa H, Fujita I, Kato M, Ojima H (1998) Distribution, morphology, and gamma-aminobutyric acid immunoreactivity of horizontally projecting neurons in the macaque inferior temporal cortex. Journal of Comparative Neurology. 401:129–143. Link


会议报告:

  • Tanigawa H, “Spatial distribution of hue selectivity in DKL color space in macaque early visual cortex”, The 42nd Annual Meeting of the Japan Neuroscience Society, Niigata, Japan, July 2019 (invited talk)

  • Du X, Kuriki I, Jiang XZhou TTanigawa H, “Hue maps of the DKL color space at columnar resolution in the early visual cortex of macaques”, The 15th Asia-Pacific Conference on Vision, Osaka, Japan, July 2019 (poster) 

  • Tanigawa H et al., “Decoding recalled color imagery using ECoG signals in the macaque prefrontal cortex”, The 14th Asia-Pacific Conference on Vision, Hangzhou, China, July 2018 (poster)


近年主要研究项目:

  • 国家自然科学基金面上项目 "猕猴前额叶皮层中与工作记忆和注意相关的功能结构及其可塑性研究", 2019.01-2022.12, 负责人

  • 中央高校基本科研业务费专项资金 "The relationship between neuronal oscillatory activity and functional columnar organization in macaque monkey visual cortex", 2018.01-2019.12, 负责人


实验室成员

IMG_7423r-s.jpg