EVENT

The brain is made up of “cities” and “buildings” with different functions. Numerous neural connections are like “information roads” that connect them into a network. Based on the brain network, information is transmitted from sensory input, processed in the brain, and ultimately produces memories, emotions, and behaviors. Therefore, understanding the brain requires mastering the “brain map”, which is like having a map when people travel. However, at present, when brain scientists explore the mysteries of the brain, but there is no complete "brain traffic map" for reference.

c1f6f5f8-7c2c-4e76-bb76-3235d91d3c04.jpg

On April 24th, local time, the team of Anna Wang Roe, Institute of Systematic Neurology and Cognition, Zhejiang University, published a brain network study online in Science Advances. The latest breakthrough in the method. Their new technology, INS-fMRI, combines infrared light stimulation with magnetic resonance imaging for the first time. This new method allows sub-millimeter brain connections in the living brain, enabling us to be faster and more systematic. Look at the "brain traffic map" to understand the transmission of information. “It’s like, we can not only know that a package departs from a laboratory building in Zhejiang University in Hangzhou to Beijing, but also knows its destination details such as district, street, building and even floor number” Xu Guohua, the first author of the article Introduced in the interview.

1d50c2a7-6660-45a1-8e02-e2773873f27e.jpg

Other participants in the study included the co-first author, PhD studeng Qian Meizhen, correspondent author Dr. Zhang Xiaotong, Dr. Chen Gang and Dr. Anna Wang Roe. They developed INS-fMRI technology to study brain networks in vivo, and their characteristics can be summarized as faster, stronger, and higher.

faster

The anatomical methods used to map brain connections usually involve injecting dyes at several initial locations in the brain, taking weeks to transport the dye and "painting" the nerve connections, then sacrificing the animal to make the brain slices, and finally very time-consuming image reconstruction and analysis. Even so, only a few injection sites can be studied in an animal.

The new technology invented by this research group combines laser stimulation and magnetic resonance imaging to quickly display in three dimensions. Preliminary results can be obtained in 1-2 hours of scanning, which is very convenient for studying brain regions at the whole brain level. The degree of response can be quickly studied in a single-day experiment. Xu Guohua said: "Instead of slowly coloring the road, it is better to send a bunch of express delivery from Hangzhou. In a very short time, we can know which cities they have arrived in."

“In addition, the benefits of INS-fMRI technology are not only fast, but also facilitate the in vivo experiments, greatly reducing the number of animals used, and conducting multiple follow-up studies on the same animal, such as studying brain development,” Wang Jing The professor said.

● stronger

Stronger performance means quantifiable and more accurate.

The infrared pulse is illuminated by a 200 micron diameter fiber to the target brain region, causing a neural response in the brain region and associated brain regions. Once the signal is activated, it will cause blood oxygen changes. This blood oxygen signal can be captured by magnetic resonance imaging. "The strength of the connection can be quantified as the magnitude and correlation of the response via the blood oxygenation reaction," Xu Guohua said.

In the early years, Professor Wang Jing was inspired by the use of laser instead of current-activated neurons in cochlear implant research. She began this research and became the first scientist to introduce infrared light stimulation into brain research. The significance of this shift is about precision, the infrared light pulse delivers energy to a very small space, achieving precise stimulation and causing spatial specificity of the connected sites.

● higher

Higher performance is high resolution. When using ultra-high field (7 Tesla) magnetic resonance imaging, these response positions can be presented at sub-millimeter resolution. This provides the basis for studying the activities of the various cortical functional columns ("buildings") and the various layers of the cortex ("floors"). "We combined the infrared light stimulation method with functional magnetic resonance and proposed this experimental method for the first time in the world." Wang Jing said.

The so-called functional column is an information processing unit inside the brain, and the size is only two or three hundred micrometers. The primate brains are arranged neatly by these functional columns; each functional column happens to correspond to a specific cognitive function and is connected to each other as a network. Therefore, for primates including humans, it is especially important to map brain connections between macro and micro scales.

However, researchers currently only know that functional columns are functional units, but it is not clear how they are specifically connected. Xu Guohua explained: "It's like many tall buildings with different functions, some schools, some hospitals, etc., but we don't understand how these buildings are connecting."

1556154632.jpg

“This method can be used to systematically stimulate the cortical function column one by one to fully depict the primate mesoscopic connectome.” Wang Jing introduced that this new technology will be a whole brain network with high-resolution functional columns. The map lays the foundation and opens the door for large-scale research. By clarifying the connections between the various functional columns, it will greatly help us understand how the primate (including human) brain works and brain diseases, and will promote the development of neuroscience, psychology, medicine and artificial intelligence.

In the Science Advances article, the research team reported two application examples, corresponding to the study of long-range connections at the whole brain scale, and high-resolution short-range connections within a local range. Experiments have shown that the application of this new method will probably help us to understand the connection and working principle of the brain, and then better understand the disease and precisely regulate the related brain structure and function.

Paper link:  https://advances.sciencemag.org/content/5/4/eaau7046


2019-04-25 READ MORE

The brain is made up of “cities” and “buildings” with different functions. Numerous neural connections are like “information roads” that connect them into a network. Based on the brain network, information is transmitted from sensory input, processed in the brain, and ultimately produces memories, emotions, and behaviors. Therefore, understanding the brain requires mastering the “brain map”, which is like having a map when people travel. However, at present, when brain scientists explore the mysteries of the brain, but there is no complete "brain traffic map" for reference.

c1f6f5f8-7c2c-4e76-bb76-3235d91d3c04.jpg

On April 24th, local time, the team of Anna Wang Roe, Institute of Systematic Neurology and Cognition, Zhejiang University, published a brain network study online in Science Advances. The latest breakthrough in the method. Their new technology, INS-fMRI, combines infrared light stimulation with magnetic resonance imaging for the first time. This new method allows sub-millimeter brain connections in the living brain, enabling us to be faster and more systematic. Look at the "brain traffic map" to understand the transmission of information. “It’s like, we can not only know that a package departs from a laboratory building in Zhejiang University in Hangzhou to Beijing, but also knows its destination details such as district, street, building and even floor number” Xu Guohua, the first author of the article Introduced in the interview.

1d50c2a7-6660-45a1-8e02-e2773873f27e.jpg

Other participants in the study included the co-first author, PhD studeng Qian Meizhen, correspondent author Dr. Zhang Xiaotong, Dr. Chen Gang and Dr. Anna Wang Roe. They developed INS-fMRI technology to study brain networks in vivo, and their characteristics can be summarized as faster, stronger, and higher.

faster

The anatomical methods used to map brain connections usually involve injecting dyes at several initial locations in the brain, taking weeks to transport the dye and "painting" the nerve connections, then sacrificing the animal to make the brain slices, and finally very time-consuming image reconstruction and analysis. Even so, only a few injection sites can be studied in an animal.

The new technology invented by this research group combines laser stimulation and magnetic resonance imaging to quickly display in three dimensions. Preliminary results can be obtained in 1-2 hours of scanning, which is very convenient for studying brain regions at the whole brain level. The degree of response can be quickly studied in a single-day experiment. Xu Guohua said: "Instead of slowly coloring the road, it is better to send a bunch of express delivery from Hangzhou. In a very short time, we can know which cities they have arrived in."

“In addition, the benefits of INS-fMRI technology are not only fast, but also facilitate the in vivo experiments, greatly reducing the number of animals used, and conducting multiple follow-up studies on the same animal, such as studying brain development,” Wang Jing The professor said.

stronger

Stronger performance means quantifiable and more accurate.

The infrared pulse is illuminated by a 200 micron diameter fiber to the target brain region, causing a neural response in the brain region and associated brain regions. Once the signal is activated, it will cause blood oxygen changes. This blood oxygen signal can be captured by magnetic resonance imaging. "The strength of the connection can be quantified as the magnitude and correlation of the response via the blood oxygenation reaction," Xu Guohua said.

In the early years, Professor Wang Jing was inspired by the use of laser instead of current-activated neurons in cochlear implant research. She began this research and became the first scientist to introduce infrared light stimulation into brain research. The significance of this shift is about precision, the infrared light pulse delivers energy to a very small space, achieving precise stimulation and causing spatial specificity of the connected sites.

higher

Higher performance is high resolution. When using ultra-high field (7 Tesla) magnetic resonance imaging, these response positions can be presented at sub-millimeter resolution. This provides the basis for studying the activities of the various cortical functional columns ("buildings") and the various layers of the cortex ("floors"). "We combined the infrared light stimulation method with functional magnetic resonance and proposed this experimental method for the first time in the world." Wang Jing said.

The so-called functional column is an information processing unit inside the brain, and the size is only two or three hundred micrometers. The primate brains are arranged neatly by these functional columns; each functional column happens to correspond to a specific cognitive function and is connected to each other as a network. Therefore, for primates including humans, it is especially important to map brain connections between macro and micro scales.

However, researchers currently only know that functional columns are functional units, but it is not clear how they are specifically connected. Xu Guohua explained: "It's like many tall buildings with different functions, some schools, some hospitals, etc., but we don't understand how these buildings are connecting."

1556154632.jpg

“This method can be used to systematically stimulate the cortical function column one by one to fully depict the primate mesoscopic connectome.” Wang Jing introduced that this new technology will be a whole brain network with high-resolution functional columns. The map lays the foundation and opens the door for large-scale research. By clarifying the connections between the various functional columns, it will greatly help us understand how the primate (including human) brain works and brain diseases, and will promote the development of neuroscience, psychology, medicine and artificial intelligence.

In the Science Advances article, the research team reported two application examples, corresponding to the study of long-range connections at the whole brain scale, and high-resolution short-range connections within a local range. Experiments have shown that the application of this new method will probably help us to understand the connection and working principle of the brain, and then better understand the disease and precisely regulate the related brain structure and function.

Paper link:  https://advances.sciencemag.org/content/5/4/eaau7046

2019-04-25 READ MORE
2019-03-07 READ MORE

2019年伊始,张孝通副研究员课题组在《IEEE Transactions on Biomedical Engineering》与《Physics in Medicine and Biology杂志陆续发表了其在7T磁共振平台开展的最新研究成果,两篇论文的第一作者分别为课题组硕士研究生王品一与博士研究生高阳


发表在《IEEE Transactions on Biomedical Engineering》的研究题“Evaluation of Submillimeter Diffusion Imaging of the Macaque Brain Using Readout-Segmented EPI at 7T”。弥散张量成像是当前一种能有效观察和追踪大脑白质纤维束的非侵入性检查方法主要用于研究人类和非人类灵长类动物大脑内的白质结构通路和结构连接模式。在临床上,毫米级的弥散张量成像广泛应用于检测超早期脑梗死、阿尔兹海默病、癫痫和脑肿瘤等疾病。但是由于扫描时间过长,图像畸变等因素的存在,因而制约了弥散张量成像的亚毫米级成像研究。近年来,超高场(7特斯拉及以上)磁共振系统的迅速发展,为亚毫米级别的大脑弥散张量成像提供了无限可能,亚毫米级图像不仅能更清晰地显示大脑白质纤维束,还能显示神经与邻近组织结构之间的空间关系,但直至目前,无论是在临床还是科研上,尚未有一种亚毫米级弥散张量成像的标准方法出现。本研究在西门子人体用7特斯拉超高场磁共振系统平台上,运用先进的西门子RESOLVE技术,在3只麻醉猕猴大脑上进行弥散张量图像的采集。通过设置RESOLVE序列中不同的扫描参数采集到不同的毫米级的弥散图像,进而通过一些列对图像信噪比和几何畸变程度的评估,得出最优的成像参数,从而寻找一种用于亚毫米级空间分辨率的弥散张量成像的最优扫描方案;同时,本研究利用这套最优扫描方案进行亚毫米级的弥散张量图像采集,获得了高质量的0.8 mm各向同性空间分辨率弥散张量图像数据,且与1mm各向同性空间分辨率弥散张量图像数据比较发现,亚毫米级弥散张量图像可以更好描绘大脑白质纤维束走向和通路结构,证实了超高场条件下亚毫米级空间分辨率弥散张量成像的可行性,为临床高分辨率弥散张量成像提供了有益的技术参考。

图片1.png

原文链接:https://ieeexplore.ieee.org/document/8641295


发表在《Physics in Medicine and Biology》的研究题“A Surface Loop Array for in vivo Small Animal MRI/fMRI on 7T Human Scanners” 基于动物模型的实验一直在神经科学研究中具有不可替代的作用。由于动物专用磁共振系统一般无法容纳大动物,且在同一台磁共振系统上开展动物和人的神经功能比较研究有助于消除不同系统带来的诸多混淆因素影响,因而在人体用磁共振系统上开展大动物研究有其必要性。但是人体用磁共振系统所装配的梯度性能要远低于动物专用磁共振系统,尤其是梯度切换速率限制了对动物进行高分辨率功能磁共振成像的研究,因而制约了高分辨率小动物功能成像研究。本研究在西门子7特斯拉超高场磁共振平台上,提出了一种结合小尺寸发射线圈和多通道接收线圈的新型磁共振射频线圈设计,利用其小范围信号激励能力缩小成像区域,同时结合多通道接收阵列的并行加速能力,最大程度减小图像编码矩阵的尺寸,同时减轻高分辨率功能成像对梯度线圈的性能要求,使得在人用磁共振系统上开展小动物成像研究成为可能。同时本研究的结果证实了低负载的小尺寸表面接收线圈阵列可以提高功能磁共振成像的时域信噪比,为优化功能磁共振成像信号采集的射频线圈设计开拓了新思路。

图片2.png


2019-02-22 READ MORE

2019年伊始,张孝通副研究员课题组在《IEEE Transactions on Biomedical Engineering》与《Physics in Medicine and Biology杂志陆续发表了其在7T磁共振平台开展的最新研究成果,两篇论文的第一作者分别为课题组硕士研究生王品一与博士研究生高阳


发表在《IEEE Transactions on Biomedical Engineering》的研究题“Evaluation of Submillimeter Diffusion Imaging of the Macaque Brain Using Readout-Segmented EPI at 7T”。弥散张量成像是当前一种能有效观察和追踪大脑白质纤维束的非侵入性检查方法, 主要用于研究人类和非人类灵长类动物大脑内的白质结构通路和结构连接模式。在临床上,毫米级的弥散张量成像广泛应用于检测超早期脑梗死、阿尔兹海默病、癫痫和脑肿瘤等疾病。但是由于扫描时间过长,图像畸变等因素的存在,因而制约了弥散张量成像的亚毫米级成像研究。近年来,超高场(7特斯拉及以上)磁共振系统的迅速发展,为亚毫米级别的大脑弥散张量成像提供了无限可能,亚毫米级图像不仅能更清晰地显示大脑白质纤维束,还能显示神经与邻近组织结构之间的空间关系,但直至目前,无论是在临床还是科研上,尚未有一种亚毫米级弥散张量成像的标准方法出现。本研究在西门子人体用7特斯拉超高场磁共振系统平台上,运用先进的西门子RESOLVE技术,在3只麻醉猕猴大脑上进行弥散张量图像的采集。通过设置RESOLVE序列中不同的扫描参数采集到不同的毫米级的弥散图像,进而通过一些列对图像信噪比和几何畸变程度的评估,得出最优的成像参数,从而寻找一种用于亚毫米级空间分辨率的弥散张量成像的最优扫描方案;同时,本研究利用这套最优扫描方案进行亚毫米级的弥散张量图像采集,获得了高质量的0.8 mm各向同性空间分辨率弥散张量图像数据,且与1mm各向同性空间分辨率弥散张量图像数据比较发现,亚毫米级弥散张量图像可以更好描绘大脑白质纤维束走向和通路结构,证实了超高场条件下亚毫米级空间分辨率弥散张量成像的可行性,为临床高分辨率弥散张量成像提供了有益的技术参考。

图片1.png

原文链接:https://ieeexplore.ieee.org/document/8641295


发表在《Physics in Medicine and Biology》的研究题“A Surface Loop Array for in vivo Small Animal MRI/fMRI on 7T Human Scanners” 基于动物模型的实验一直在神经科学研究中具有不可替代的作用。由于动物专用磁共振系统一般无法容纳大动物,且在同一台磁共振系统上开展动物和人的神经功能比较研究有助于消除不同系统带来的诸多混淆因素影响,因而在人体用磁共振系统上开展大动物研究有其必要性。但是人体用磁共振系统所装配的梯度性能要远低于动物专用磁共振系统,尤其是梯度切换速率限制了对动物进行高分辨率功能磁共振成像的研究,因而制约了高分辨率小动物功能成像研究。本研究在西门子7特斯拉超高场磁共振平台上,提出了一种结合小尺寸发射线圈和多通道接收线圈的新型磁共振射频线圈设计,利用其小范围信号激励能力缩小成像区域,同时结合多通道接收阵列的并行加速能力,最大程度减小图像编码矩阵的尺寸,同时减轻高分辨率功能成像对梯度线圈的性能要求,使得在人用磁共振系统上开展小动物成像研究成为可能。同时本研究的结果证实了低负载的小尺寸表面接收线圈阵列可以提高功能磁共振成像的时域信噪比,为优化功能磁共振成像信号采集的射频线圈设计开拓了新思路。

图片2.png

2019-02-22 READ MORE
2019-01-16 READ MORE
System neural and cognitive science research institutereturn

Login

The institute's official website to welcome you

Login