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An essential step in understanding visual processing is to charac-
terize the neuronal receptive fields (RFs) at each stage of the visual
pathway. However, RF characterization beyond simple cells in the
primary visual cortex (V1) remains a major challenge. Recent
application of spike-triggered covariance (STC) analysis has greatly
facilitated characterization of complex cell RFs in anesthetized
animals. Here we apply STC to RF characterization in awake
monkey V1. We found up to nine subunits for each cell, including
one or two dominant excitatory subunits as described by the
standard model, along with additional excitatory and suppressive
subunits with weaker contributions. Compared with the dominant
subunits, the nondominant excitatory subunits prefer similar ori-
entations and spatial frequencies but have larger spatial enve-
lopes. They contribute to response invariance to small changes in
stimulus orientation, position, and spatial frequency. In contrast,
the suppressive subunits are tuned to orientations 45°–90° differ-
ent from the excitatory subunits, which may underlie cross-
orientation suppression. Together, the excitatory and suppressive
subunits form a compact description of RFs in awake monkey V1,
allowing prediction of the responses to arbitrary visual stimuli.

The response properties of primary visual cortical (V1) neurons
have been studied extensively over the past several decades. In

the standard model, a simple cell receptive field (RF) consists of
alternating ON and OFF subregions, which directly correspond to
the orientation and spatial-frequency tuning of the cell (1, 2).
Complex cells exhibit orientation and spatial-frequency tuning
similar to simple cells, but they are insensitive to the contrast
polarity and stimulus position within the RF. The energy model for
complex cell RF consists of a pair of simple-cell-like subunits with
the same orientation and spatial-frequency tuning but different
ON/OFF phases (3, 4). This model accounts for the phase invari-
ance as well as stimulus selectivity of complex cells.

To validate such RF models and to predict the neuronal re-
sponses to arbitrary visual stimuli, it is necessary to measure the RF
structure quantitatively. For simple cells, spike-triggered average
(STA) has been used effectively to estimate their RFs from the
responses to sparse noise (5) or white noise (6). For complex cells,
however, because the outputs of different RF subunits are com-
bined nonlinearly, these subunits cannot be estimated by STA. In
previous studies, complex cell RFs have been studied by measuring
the nonlinear interaction between paired stimuli (3, 7, 8). Another
method used in recent studies is spike-triggered covariance (STC)
analysis (9, 10). Instead of averaging all of the stimuli preceding
spikes (as in STA), in STC analysis one computes the covariance
matrix of the spike-triggered stimulus ensemble and identifies the
eigenvectors with eigenvalues significantly different from those of
the entire stimulus ensemble. This method can reveal stimulus
features that drive the neuron in a contrast-dependent but polarity-
invariant manner, and it has proved highly effective in character-
izing complex cell RF subunits in both cat (11, 12) and monkey
(13) V1.

Although the above studies have characterized the spatiotem-
poral structure of complex cell RFs in anesthetized animals, an
ultimate challenge is to understand RF properties in the awake

brain. Neuronal RFs in awake monkey V1 have been studied in
phase-separated Fourier space (14). In the current study, we used
STC to analyze the spatial structure of V1 RFs in awake monkeys.
In addition to the dominant subunits that are consistent with the
standard models for simple (1, 2) and complex (3, 4) cells, we found
additional excitatory subunits that contribute to orientation, posi-
tion, and spatial-frequency invariance. For some cells, we also
found suppressive subunits (13). These subunits are tuned to
orientations up to 90° different from the excitatory subunits, which
may contribute to cross-orientation suppression (15). Including the
nondominant excitatory and suppressive subunits in the model
significantly improved the prediction of neuronal responses to
arbitrary white noise stimuli.

Results
We made single-unit recordings from 227 V1 neurons in three
macaque monkeys performing a fixation task. Visual stimuli were
binary white noise (10 � 10 � 12 � 12 pixels, 25 frames per s)
presented in an area slightly larger than the RF of each cell. During
each stimulus epoch (7,500 frames, 5 min), the eye position was
monitored continuously. Recordings during periods when the eye
position was outside of a fixation window were excluded from
analyses (Fig. 1A).

The stimulus preceding each spike was collected to form the
spike-triggered ensemble (Fig. 1B), and the covariance matrix of
this ensemble was computed. Significant eigenvalues were defined
as those that were significantly different from (i) the control
eigenvalues calculated based on randomized spike trains (Fig. 2A)
and (ii) their neighboring eigenvalues (Fig. 2B; Materials and
Methods) (16). For 145 of the 227 cells studied, we found at least one
significant eigenvalue. The eigenvectors with significantly higher
eigenvalues represent stimulus features that excite the cell (11, 16),
whereas those with significantly lower eigenvalues reflect suppres-
sive features that reduce neuronal firing (13).

Grouping of Significant Eigenvectors. The significant eigenvectors of
each cell could be divided into three groups, based on their spatial
structure and eigenvalues. The first group consisted of one or two
eigenvectors whose eigenvalues stood out most prominently above
the rest. These excitatory eigenvectors, referred to as ‘‘dominant
eigenvectors,’’ were almost always Gabor-like. Most of the complex
cell-like neurons, whose responses to drifting gratings were mod-
ulated only weakly at the stimulus temporal frequency (17), con-
tained a pair of dominant eigenvectors (e.g., both cells in Fig. 2).
These eigenvectors were similar to each other in size, orientation,
and spatial frequency, but different in phase (Fig. 2C), consistent
with the pair of subunits in the energy model (3, 4). On the other
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hand, cells with strong temporal modulations (simple-cell-like) are
likely to have a single dominant eigenvector (i.e., the largest jump
is between the first and second eigenvalues). This eigenvector
typically resembled STA (data not shown), which represents the
linear RF of the simple cell. Note that we did not strictly distinguish
between simple and complex cells because recent studies suggested
that V1 neurons fall on a simple/complex continuum rather than in
two distinct classes (18, 19).

Many simple- or complex-like neurons also exhibited additional
excitatory eigenvectors, whose eigenvalues showed smaller but
significant upward jumps (Fig. 2 A and B). This second group of
eigenvectors, referred to as ‘‘nondominant’’ excitatory eigenvectors,
were oriented similarly to the dominant eigenvectors but showed
more complex spatial structures and larger sizes (Figs. 2C and 3A).
For 38 cells, we also found a third group of eigenvectors with
significantly lower eigenvalues. Most of these suppressive eigen-
vectors (Fig. 2C, second cell; Fig. 3A, third and fourth cells) are
oriented differently from the excitatory eigenvectors. It is important
to note that, although the significant eigenvectors provide a func-
tional description of the RF that is indicative of the response
properties of the presynaptic neurons, each significant eigenvector
does not necessarily represent the RF of an individual presynaptic
cell (i.e., an ‘‘anatomical subunit’’). Instead, it is likely to represent
a linear combination of multiple anatomical subunits (11, 13).
However, as a convenient functional description, we refer to these
significant eigenvectors as the excitatory or suppressive RF
subunits.

Relationship Between Subunit Groups. To understand the relation-
ship between the three groups of subunits, we first compared their
locations and sizes by computing the pooled spatial envelope of
each group (square root of the weighted sum of squares of all of the
subunits in each group; see Materials and Methods) (13). Compared
with the dominant group, the nondominant excitatory subunits
showed a larger spatial envelope (Fig. 4 A and C), similar to the
finding in anesthetized monkey V1 (13). This finding could be
explained if the nondominant eigenvectors represent combinations
of multiple anatomical subunits that are spatially displaced from
each other. The suppressive subunits, on the other hand, largely
overlapped with the dominant subunits in space. Quantitative
comparison of the subunit sizes is summarized in Fig. 5 A and B,
based on the width at half height of each pooled envelope along the
preferred orientation (length) and the perpendicular axis (width).

We also compared the spatial-frequency and orientation tuning

of the three groups based on the pooled spatial spectrum of each
group (Fig. 4B). The spectrum of the nondominant excitatory group
largely overlapped with that of the dominant group (Fig. 4C),
indicating similar orientation and frequency tuning. In contrast, the
spectrum of the suppressive subunits showed little overlap with the
excitatory groups. The separation between the excitatory and
suppressive subunits in spatial spectrum was more pronounced
along the angular axis than the radial axis, indicating major differ-
ences in orientation as opposed to frequency tuning. For the
population of cells, the preferred spatial frequency and orientation
of the nondominant excitatory subunits were closely correlated with
those of the dominant subunits (Fig. 5 C Upper and D Upper), but
the suppressive subunits showed larger deviations in frequency
tuning and up to 90° difference in preferred orientation (Fig. 5 C
Lower and D Lower).

Response Invariance. The angular separation between the excitatory
and suppressive subunits in the spectral domain suggests that the
suppressive subunits contribute to cross-orientation suppression
(15), which should enhance the selectivity of V1 neurons. What is
the function of the nondominant excitatory subunits? Because each
excitatory eigenvector is likely to represent a combination of
multiple anatomical subunits (11, 13), and conversely an anatomical
subunit may be approximated as a combination of eigenvectors, we
examined various linear combinations of the excitatory eigenvec-

Fig. 2. Identification of significant eigenvectors, illustrated with two V1 cells
(Left and Right). (A) Eigenvalues of STC matrix. Dashed lines: control confi-
dence intervals (P � 10�4). (B) Difference between neighboring eigenvalues.
Dashed line: confidence interval for the difference (P � 10�4). (A and B) Large
circles represent significant eigenvalues satisfying criteria. (C) Significant eig-
envectors. Contrast of each eigenvector is scaled by its relative weight (see
Materials and Methods). Excitatory and suppressive eigenvectors were scaled
separately. (Scale: 0.5°.)

Fig. 1. Illustration of experimental and analytical procedures. (A) Example
eye position traces recorded by the eye tracker. (Scales: 1 s, 1°.) Shading:
periods with eye position outside of fixation window. Corresponding seg-
ments of the spike train (bottom) were excluded from analysis. Gray: excluded
spikes. (B) White noise stimuli. Gray box: stimulus preceding each spike.

Chen et al. PNAS � November 27, 2007 � vol. 104 � no. 48 � 19121

N
EU

RO
SC

IE
N

CE



tors. The neuronal responses to combinations of eigenvectors can
be characterized by joint contrast–response functions (11, 13).

Fig. 6A shows the joint contrast–response functions for four
pair-wise combinations of the excitatory subunits of a neuron. The
contrast of a given subunit in each stimulus is defined as the dot
product of the eigenvector and the stimulus, and the neuronal firing
rate is plotted against the contrasts of each pair of subunits.
Consistent with previous findings in cat V1 (11), each combination
of the dominant pair of subunits also is Gabor-like (Fig. 6A Upper
Left), with the spatial phase shifting with the relative weights of the
two subunits (angular coordinate of the 2-D function). The circu-
larly symmetric joint contrast–response function thus is consistent
with the known phase invariance of complex cells (1, 3, 4). Inter-
estingly, combinations between a dominant and a nondominant
excitatory subunit revealed other forms of invariance. For this cell,
although the third (nondominant) eigenvector contained fractured
ON and OFF subregions, its combinations with the first (dominant)
eigenvector resulted in Gabor-like patterns at different orientations
(Fig. 6A Upper Right, compare patterns in the three boxes).
Furthermore, combinations between the second and third eigen-
vectors resulted in Gabor patterns at different positions (Fig. 6A
Lower Left), and those between the second and fifth exhibited
different frequencies (Fig. 6A Lower Right). Because the nondomi-
nant subunits make weaker contributions to the response than the
dominant ones do, the joint contrast–response functions did not
exhibit perfect circular symmetry. Nevertheless, the existence of
these weaker excitatory subunits enhanced the response invariance
with respect to small changes in stimulus orientation, position, and

frequency (20). A plausible anatomical basis for such invariance is
that the neuron receives inputs from a set of presynaptic neurons
with slightly different preferred orientations, RF positions, and
spatial frequencies.

The above three types of invariance also were observed in other
cells, with orientation invariance the most common. We thus
further quantified the effect of nondominant excitatory subunits on
orientation tuning. The tuning of each subunit was computed as its
responses to sinusoidal gratings at a range of orientations at the
optimal frequency. Because previous studies have shown that the
excitatory subunits contribute additively to the responses (11, 13),
the tuning of the cell was predicted as the weighted sum of the
tuning of all excitatory subunits, with the weight of each subunit
proportional to its contrast–response gain (Materials and Methods).
As shown in Fig. 6B, including the nondominant excitatory subunits
in the prediction indeed broadened the tuning for this example cell.
For the population of cells with well tuned excitatory subunits,
including the nondominant subunits significantly increased the
width of tuning (Fig. 6C, P � 0.01, Wilcoxon signed rank test).
Notably, the effects of the nondominant excitatory subunits and the
suppressive subunits on orientation tuning do not simply cancel
each other. Although the nondominant excitatory subunits render
the neuron less sensitive to small variations around the optimal
orientation, the suppressive subunits reduce the responses near the
orthogonal orientation without necessarily narrowing the tuning
curve (Fig. 6B Inset).

Predictions of Responses to White Noise. Finally, to assess the RF
model based on the significant eigenvectors, we predicted the

Fig. 3. Number of significant eigenvectors per cell. (A) Significant eigenvec-
tors for four example cells. E, excitatory; S, suppressive. (Scale: 0.5°.) (B)
Distribution of the number of significant eigenvectors per cell.

Fig. 4. Spatial and spectral relationships among subunit groups. (A) (Upper)
Dominant and nondominant excitatory (Ed and End) and suppressive (S) sub-
units of a cell. (Scale: 0.5°.) (Lower) Pooled spatial envelope of each group of
subunits. Red, E; green, S. In E&S (all groups superimposed), yellow indicates
overlap between E and S. (B) (Upper) Spatial-frequency spectrum of each
subunit in A. (Lower) Pooled frequency spectrum of each group. (C) Pooled
spatial envelopes (upper rows) and frequency spectra (lower rows) of the
three subunit groups for five cells.
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response of each cell to a short white noise test sequence (30 s,
repeated 4–70 times) by using (i) dominant subunits alone, (ii) all
excitatory subunits, and (iii) all excitatory and suppressive subunits.
The responses of the excitatory subunits and those of the suppres-
sive subunits first were summed separately by using weights pro-
portional to their contrast–response gains. The excitatory and
suppressive components then were combined with a nonlinear
function that allows both subtractive and divisive interactions (13)
(Materials and Methods). Fig. 7A shows the measured response of
an example cell (gray shading) and the predictions based on the
dominant subunits alone (black line) and based on all excitatory
and suppressive subunits (red line). Although the model based on
the dominant subunits alone predicted the main temporal varia-
tions of the response, including the nondominant excitatory and
suppressive subunits improved the prediction by alleviating both
underestimation and overestimation of the peak amplitudes (Fig.
7A, arrowheads).

We measured the quality of prediction by each model using the
correlation coefficient between the predicted and measured re-
sponses. Compared with the model based on the dominant subunits
alone, including the nondominant excitatory subunits significantly
improved the prediction for the population of cells (Fig. 7B, P �
10�5, Wilcoxon signed rank test, n � 83). Including the suppressive
subunits led to a small further improvement (Fig. 7C), although the
effect was not significant. Even with the full model, however, the
correlation coefficient between the predicted and measured re-
sponses was lower than that between measured responses averaged
from different repeats (Fig. 7D), indicating that the prediction error
could not be entirely accounted for by noise in the measured
responses. The incompleteness of the model may be attributable to
additional subunits not identified by STC or to inaccuracy in the
estimated RF subunits, both of which depend on the amount of data
(21, 22), which is limited in recordings from awake monkeys. More
importantly, the responses are likely to exhibit other forms of
nonlinearity such as adaptation (23), which are not captured by the
RF model used in this study.

Discussion
The current study, together with several other STC analyses (11–13,
16), suggests the following model for V1 classical RF. The dominant
RF component is a Gabor-like subunit for simple cells and a pair
of subunits for complex cells, consistent with the standard model
(1–4). In both anesthetized and awake monkeys, however, STC
analysis allowed identification of two additional groups of subunits:
the nondominant excitatory and suppressive subunits, whose con-

tributions to V1 responses are weaker than those of the dominant
subunits. The nondominant excitatory subunits are more dispersed
spatially but largely overlap with the dominant subunits in the
frequency spectrum (Figs. 4 and 5), and they contribute to response
invariance to small changes in stimulus orientation, position, and
frequency (Fig. 6). In contrast, the suppressive subunits overlap
with the dominant subunits spatially but are complementary in the
frequency spectrum. They are likely to mediate suppression of
the responses to ‘‘antagonistic’’ visual features such as those at the
orthogonal orientation (Figs. 4 and 5). Invariance and selectivity of
neuronal responses are both important for visual processing. As
shown in Fig. 7, incorporating the nondominant subunits in the
model improves the prediction of responses to arbitrary white noise
stimuli.

In previous studies in anesthetized cat V1 (11, 12, 16), we found
that most complex cell RFs consist of two Gabor-like subunits, and
nondominant subunits rarely were observed. In this study, it is
possible that small eye movements within the fixation window
produced artifactual, significant eigenvectors and contributed to
the nondominant subunits. Although we cannot exclude this pos-
sibility completely, the finding that the nondominant subunits
significantly improved the response prediction (Fig. 7) indicates that
they are integral components of the functional description of V1
responses. The difference in the number of significant eigenvectors
found in the current and previous studies may be partly attributable
to differences in the number of spikes used in the analysis, the
signal-to-noise ratio of the responses, or the number or strength of
the nondominant subunits. Regardless of the underlying reason, the
fact that nondominant subunits are readily observed in V1 of both
anesthetized (13) and awake monkeys suggests that there are
significant interspecies differences in the number of RF subunits
identifiable by the STC analysis.

The effect of the nondominant subunits in improving response
prediction found in this study (Fig. 7) is relatively small compared
with that found in anesthetized monkey V1 (13). This discrepancy
may be partly attributable to the difference in the stimuli used for
testing the models. Although we used arbitrary white noise stimuli,
the test stimuli previously used were matched to the nondominant
subunits in spatiotemporal patterns and thus were likely to empha-
size their contributions to the responses. It also is possible that,
compared with the 2-D white noise stimuli used in this study, the
relative contribution of the nondominant subunits is stronger in
response to bar stimuli at the preferred orientation (13). Never-
theless, it is interesting to note that both null-direction and cross-
orientation suppression can be modeled by suppressive RF sub-

Fig. 5. Quantitative comparison between nondominant and dominant subunits. (A and B) Length and width of pooled spatial envelope, measured by width
at half height. Each point represents one cell (n � 79). (C) Optimal spatial frequency (peak of frequency spectrum) for the same cells in A and B. (D) Difference
in preferred orientation. White bars, cells with clear tuning (circular variance of tuning for each group of subunits �0.7); gray bars, poorly tuned cells (circular
variance �0.7). Circular variance is defined as 1 �  ¥k Rk ei2�k /¥k Rk (Rk, response at orientation �k, 0 � �k � 180°).
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units, even though they are likely to be mediated by distinct neural
circuits.

Most of the previous quantitative studies of neuronal RFs were
performed under anesthesia, which may significantly affect the
response properties of sensory neurons. Our study shows that STC
analysis is highly effective for mapping RF subunit structure in
awake monkey V1. Although this study is performed with white
noise stimuli, a similar technique can be used to analyze cortical
responses to naturalistic stimuli (12, 14, 16, 24). The findings
reported here not only provide a compact RF model for under-
standing V1 responses to arbitrary stimuli (Fig. 7) but also set the
stage for studying nonlinear visual processing in higher-level cor-
tical areas.

Materials and Methods
Recording. Single-unit recordings were made in V1 of three adult
monkeys (two male and one female Macaca mulatta) by using

glass-coated tungsten electrodes (25). Unit isolation was based on
cluster analysis of waveforms and the presence of a refractory
period in autocorrelograms. Each recording epoch was 5 min. All
single units lasting for �3 epochs were included (maximum 25
epochs, n � 227). The RFs of these cells were 2°–9° from the fixation
point. During each epoch, the monkey performed a continuous
fixation task for a juice reward. Eye position was monitored with a
remote infrared eye tracker (EYELINK II, resolution 0.01°, sam-
pling rate 500 Hz). An elliptical window was set for eye position;
vertical and horizontal axes were selected so that the kurtosis of
data points in the window was 3 (mean vertical axis, 1.2°; horizontal
axis, 0.5°). Data recorded while the eye position was outside of the
window were discarded (Fig. 1). In practice, however, our results
were quite insensitive to the window size or shape; results were
similar even when it was set to infinity. Surgery was conducted
under aseptic conditions under deep pentobarbital anesthesia. All
procedures were in accordance with National Institutes of Health
guidelines.

Visual Stimulation. Stimuli were generated with a PC, presented
with a Sony Multiscan G520 monitor (30 � 40 cm, refresh rate 100
Hz, maximum luminance 80 cd/m�2). Binary white noise (10 �
10 � 12 � 12 pixels, 0.8 � 0.8° � 4.2 � 4.2°, 100% contrast) was
presented at an effective frame rate of 25 Hz (updated every four
frames). Each epoch consisted of 7,500 frames, and stimuli in
different epochs were different. To test prediction of the model
based on significant eigenvectors, a white noise sequence (750
frames, 30 s) was repeated 4–70 times for each cell.

STC Analysis. Details of the STC analysis have been described
previously (11, 13, 16). Briefly, the STC matrix [Cm,n] was
computed as

Cm,n �
1
N �

i�1

N

Sm�i�Sn�i�,

Fig. 6. Phase, orientation, position, and frequency invariance. (A) Joint
contrast–response functions of a complex cell (second cell in Fig. 3A) for
different pair-wise combinations of its six excitatory subunits. Firing rate is
luminance-coded. Black lines indicate contours of constant firing rate (at 0.5�
and 1� mean of each function); circular contour indicates perfect invariance.
Small outer plots represent stimulus patterns corresponding to selected points
(arrows) in the function. (B) Orientation tuning of the cell predicted by the
dominant subunits alone (dashed line) and by all excitatory subunits (solid
line). Arrows indicate width at half height. (Inset) Predicted tuning of another
cell, based on only the excitatory subunits (dashed line) and on both excitatory
and suppressive subunits. (C) Predicted tuning width based on all excitatory
subunits versus that based on dominant subunits alone. Each point represents
one cell; only cells with clear tuning (circular variance � 0.6) were included
(n � 56).

Fig. 7. Prediction of responses to white noise stimuli. (A) Comparison of
predicted and measured firing rates of a cell. Gray shading: measured re-
sponse averaged from 24 repeats of the test stimulus. Black line: prediction
based on dominant subunits. Red line: Prediction based on all subunits (six
excitatory, one suppressive). Red arrowheads, peaks better predicted by the
model with all subunits. (B) Improvement of prediction by nondominant
excitatory subunits. Correlation coefficient (CC) between measured and pre-
dicted responses based on all excitatory subunits versus CC with only dominant
subunits. Each symbol represents one cell. (C) Improvement of prediction by
suppressive subunits. CC based on both excitatory and suppressive subunits
versus CC with only excitatory subunits. (D) CC between measured responses
(averaged from two nonoverlapping sets of repeats) versus CC between
predicted (based on all subunits) and measured responses (n � 123).
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where Sm(i) and Sn(i) are luminance of the mth and nth pixels in the
stimulus preceding the ith spike and N is the total number of spikes.
Eigenvalues and eigenvectors of this matrix were computed. To
identify significant eigenvectors, we first determined which eigen-
values are significantly different from the control (Fig. 2A), defined
as the eigenvalues of spike-triggered ensembles based on random
spike trains (with the same spike number as the recorded response
but random spike time; the results are very similar if the controls
are generated by shifting the recorded spike train randomly in
time). The confidence intervals for the control were computed by
using 500 random spike trains (mean � 4.4 SD, corresponding to
P � 10�4 for Gaussian distribution; we found that the distribution
of control eigenvalues was close to Gaussian). We then identified
‘‘outstanding’’ eigenvalues by calculating the difference between
neighboring eigenvalues (Fig. 2B). The confidence interval was set
at mean 	 4.4 SD of the differences, after excluding the first and
last five eigenvalues (which are likely to be significant eigenvalues
with large differences from their neighbors). If a point is found
beyond the confidence interval, all of the eigenvalues preceding (for
excitatory eigenvectors) or following (for suppressive eigenvectors)
this point are considered significant by this criterion (Fig. 2B).
Eigenvalues that satisfy both criteria (Fig. 2 A and B) are considered
significant. Note that with Gaussian noise as stimuli, only the first
criterion (Fig. 2A) is necessary. With binary stimuli, however,
incorporating the second criterion (Fig. 2B) helps to reduce arti-
facts in identifying the suppressive subunits (see below). The 4.4 SD
used for both criteria is, of course, somewhat arbitrary. Although we
did not select cells based on spike number (all cells with �3 epochs
were included), we found that the number of spikes significantly
affected the probability of finding significant eigenvectors. Among
the 18 cells with �3,000 spikes, only 2 (11%) had significant
eigenvectors, but for the 186 cells with �5,000 spikes, 128 (69%)
had significant eigenvectors.

In most analyses (Figs. 2–6), we focused on the spatial RF
structure by performing STC at the optimal frame (one or two
frames before each spike) to improve the signal-to-noise ratio of the
estimate. For predicting the responses to white noise stimuli (Fig.
7), both frames were included to estimate the spatiotemporal RF
subunits. Although in principle including both frames should im-
prove the prediction, in practice this improvement was very small,
probably because including the second frame also reduced the
accuracy of the estimated eigenvectors.

Note that to compute the standard covariance matrix, the
average of the spike-triggered ensemble (the STA) should be
subtracted from the stimuli. In some implementations of STC, STA
is weighted before subtracted to ensure that the eigenvectors are
orthogonal to STA (13). We believe that the treatment of STA is
largely a matter of individual preference, as long as the specific

choice is taken into consideration when interpreting the result. As
in our previous implementations (11, 16), STA was not subtracted
in this study. As a result, the first eigenvector (with largest eigen-
value) of simple-cell-like neurons often is similar to STA.

As pointed out in previous studies (13, 22), the use of binary white
noise may result in artifacts in the identification of suppressive
eigenvectors, because of tapering of the stimulus distribution (re-
duction of variance) as one moves away from the origin along
particular directions. The resulting spurious suppressive eigenvec-
tors are related to the excitatory eigenvectors that lie close to these
directions rather than the suppressive features of the neuron. To
reduce such artifacts, we used the method developed in a previous
study (13). Briefly, we computed the pooled response of the
excitatory eigenvectors to each stimulus, divided these stimuli into
10 equal-sized subsets according to the pooled responses, and
whitened each subset by multiplying it by EeEe

T 	 EoEnDn
�1/2En

TEo
T.

The matrix Ee contains the excitatory eigenvectors, Eo contains all
other eigenvectors, and En and Dn are eigenvectors and eigenvalues
of the covariance matrix of the nth subset. The whitened stimuli
then were used to estimate the suppressive eigenvectors (13). The
combination of this whitening step and the use of the second
criterion (Fig. 2B) effectively eliminated the spurious suppressive
eigenvectors.

Relative Weights of Subunits. The contribution of each significant
eigenvector (V) to neuronal response depends on the gain of the
contrast–response function. The gain was estimated by fitting the
left and right sides of the function separately by r � a(S�V)2 	 b,
where r is the firing rate, S is the stimulus, and a and b are free
parameters (11, 16). The relative weight of each eigenvector is
defined as 
 a and used to compute the pooled spatial envelope
and Fourier spectrum (Fig. 4) and the pooled responses for
predicting orientation tuning (Fig. 6) and white noise responses
(Fig. 7).

Response Prediction. To predict the responses to arbitrary stimuli,
we fitted the following function to recorded responses: r � � 	
(�E � �S)/(�E 	 �S 	 1), where E and S are pooled responses of
the excitatory and suppressive eigenvectors, respectively, and �, �,
�, �, and � are free parameters. This is similar to the model in a
previous study (13), allowing both subtractive and divisive contri-
butions of the suppressive eigenvectors. Values for the free param-
eters were fit to minimize the mean-squared error for the ‘‘training
data,’’ which are the responses used to compute the eigenvectors.

We thank Dr. Yu-Xi Fu for technical support. This work was supported
by the Outstanding Overseas Chinese Scholars Fund (2005-1-6), Project
KSCX2-YW-R-29 of Chinese Academy of Sciences 973 Grant
2006CB806600, and a National Eye Institute grant.

1. Hubel DH, Wiesel TN (1962) J Physiol (London) 160:106–154.
2. Movshon JA, Thompson ID, Tolhurst DJ (1978) J Physiol (London) 283:53–77.
3. Movshon JA, Thompson ID, Tolhurst DJ (1978) J Physiol (London) 283:79–99.
4. Adelson EH, Bergen JR (1985) J Opt Soc Am A 2:284–299.
5. Jones JP, Palmer LA (1987) J Neurophysiol 58:1187–1211.
6. Reid RC, Victor JD, Shapley RM (1997) Visual Neurosci 14:1015–1027.
7. Emerson RC, Citron MC, Vaughn WJ, Klein SA (1987) J Neurophysiol 58:33–65.
8. Livingstone MS, Conway BR (2003) J Neurophysiol 89:2743–2759.
9. De Ruyter Van Steveninck R, Bialek W (1988) Proc R Soc London Ser B

234:379–414.
10. Brenner N, Bialek W, de Ruyter van Steveninck R (2000) Neuron 26:695–702.
11. Touryan J, Lau B, Dan Y (2002) J Neurosci 22:10811–10818.
12. Felsen G, Touryan J, Han F, Dan Y (2005) PLoS Biol 3:e342.
13. Rust NC, Schwartz O, Movshon JA, Simoncelli EP (2005) Neuron 46:945–956.

14. David SV, Vinje WE, Gallant JL (2004) J Neurosci 24:6991–7006.
15. Bonds AB (1989) Visual Neurosci 2:41–55.
16. Touryan J, Felsen G, Dan Y (2005) Neuron 45:781–791.
17. Skottun BC, De Valois RL, Grosof DH, Movshon JA, Albrecht DG, Bonds AB

(1991) Vision Res 31:1079–1086.
18. Chance FS, Nelson SB, Abbott LF (1999) Nat Neurosci 2:277–282.
19. Mechler F, Ringach DL (2002) Vision Res 42:1017–1033.
20. Berkes P, Wiskott L (2006) Neural Comput 18:1868–1895.
21. Aguera y Arcas B, Fairhall AL (2003) Neural Comput 15:1789–1807.
22. Paninski L (2003) Network 14:437–464.
23. Maffei L, Fiorentini A, Bisti S (1973) Science 182:1036–1038.
24. Sharpee TO, Sugihara H, Kurgansky AV, Rebrik SP, Stryker MP, Miller KD

(2006) Nature 439:936–942.
25. Li CY, Xu XZ, Tigwell D (1995) J Neurosci Methods 57:217–220.

Chen et al. PNAS � November 27, 2007 � vol. 104 � no. 48 � 19125

N
EU

RO
SC

IE
N

CE




