SHARED PLATFORM

   INTERDISCIPLINARY INSTITUTE OF NEUROSCIENCE AND TECHNOLOGY

OUR TEAM

INTERDISCIPLINARY INSTITUTE OF NEUROSCIENCE AND TECHNOLOGY

7T TEAM

    INTERDISCIPLINARY INSTITUTE OF NEUROSCIENCE AND TECHNOLOGY

MAGNETOM 7T MRI

               INTERDISCIPLINARY INSTITUTE OF NEUROSCIENCE AND TECHNOLOGY

GRADUATE SCHOOL OF ZJU

WELCOME TO JOIN US

   INTERDISCIPLINARY INSTITUTE OF NEUROSCIENCE AND TECHNOLOGY

ZIINT 2018 Summer Camp

  On May 24th, Professor Pasko Rakic of Yale University School of Medicine gave a brilliant lecture titled “The evolution of brain and the formation of brain map during disease development” for Zhejiang master students in the Zijingang lecture hall of Alumni House. Pasko Rakic is a renowned neuroscientist at Yale University School of Medicine and is also the recipient of the 2008 Kavli Neuroscience Award.


p1.jpg


  Prof Rakic is affable and lectures are humorous. He started from studies he had done before, eliciting the phenomenon that “cortical neurons are not produced within the cerebral cortex itself” and further analyzed how this phenomenon occurs and the causes behind it. Prof. Rakic also contrasted his choice-elimination hypothesis with the alternative retention hypothesis proposed by Prof. Changex, humorously comparing it to “half-full cup and half-empty cup”.

  Professor Rakic pointed out that the core issue is not the dispute between genes and environment or stability and plasticity. The focus of research should be on how the two complement and supplement each other. Subsequently, he compared and analyzed the cerebral cortex differences between rats and humans in terms of both qualitative and quantitative dimensions. At the same time, he carefully traced the cerebral cortex elements from which the monkeys were born, and analyzed the external environment differences (pressure, fever, and other Disease, etc.) The development of different degrees of brain area development. After a series of analyses, Rakic concludes that as the evolution of vertebrates evolves, neuronal turnover capacity continues to decline.


p2.jpg


  The atmosphere of the interactive session was enthusiastic. The students actively asked questions about the speech and the teacher also asked questions about the operation of the study. The entire lecture ended successfully in the interaction.

2018-05-25 READ MORE

Significance

Body-centered (egocentric) and world-centered (allocentric) spatial reference frames are both important for spatial navigation. We have previously shown that vestibular heading signals, which are initially coded in a head-centered reference frame, are no longer head-centered in the ventral intraparietal (VIP) area, but instead are represented in either a body- or world-centered frame, as the two frames were not dissociated. Here, we report a flexible switching between egocentric and allocentric reference frames in a subpopulation of VIP neurons, depending on gaze strategy. Other VIP neurons continue to represent heading in a body-centered reference frame despite changes in gaze strategy. These findings suggest that the vestibular representation of heading in VIP is dynamic and may be modulated by task demands.

Abstract

By systematically manipulating head position relative to the body and eye position relative to the head, previous studies have shown that vestibular tuning curves of neurons in the ventral intraparietal (VIP) area remain invariant when expressed in body-/world-centered coordinates. However, body orientation relative to the world was not manipulated; thus, an egocentric, body-centered representation could not be distinguished from an allocentric, world-centered reference frame. We manipulated the orientation of the body relative to the world such that we could distinguish whether vestibular heading signals in VIP are organized in body- or world-centered reference frames. We found a hybrid representation, depending on gaze direction. When gaze remained fixed relative to the body, the vestibular heading tuning of VIP neurons shifted systematically with body orientation, indicating an egocentric, body-centered reference frame. In contrast, when gaze remained fixed relative to the world, this representation changed to be intermediate between body- and world-centered. We conclude that the neural representation of heading in posterior parietal cortex is flexible, depending on gaze and possibly attentional demands.

Keywords

ventral intraparietal area | reference frame | vestibular |body/world-centered | egocentric/allocentric

 

Online Paper: http://www.pnas.org/content/early/2018/03/14/1715625115

Flexible egocentric and allocentric representations of heading signals in parietal cortex.pdf

Reference

[1] Chen X, DeAngelis GC, Angelaki DE (2013) Diverse spatial reference frames of vestibular signals in parietal cortex. Neuron 80:1310-1321.

 

2018-03-27 READ MORE

In a recent study published in Cerebral Cortex entitled “Presynaptic GABAa Receptors Modulate Thalamocortical Inputs in Layer 4 of Rat V1”, Dr. Lang Wang and her colleagues reported an exciting existence of presynaptic GABAa receptors selectively expressed on thalamocortical axon terminals by combining electrophysiology, optogenetic and EM approaches, which provides a novel mechanistic insight into the effects of changes in cortical inhibition and the ability to modulate inputs onto cortical circuits locally via presynaptic GABAa receptors.

 

Neocortical GABAergic neurons are diverse and connect broadly to excitatory neurons, providing cortical circuits with sophisticated computational control of neuronal activity. While there is general agreement regarding the involvement of fast GABAa receptor-mediated inhibition in the control of circuit excitability, several unresolved issues remain concerning how this regulation is achieved. The current thinking is that GABAa receptors are located mainly at postsynaptic and extrasynaptic sites in neocortex, thus manipulation of fast inhibition would only affect intracortical circuits, while leaving incoming afferent inputs unaffected. Here we report that GABAa receptors containing specific subunits are selectively present on presynaptic terminals of thalamocortical (TC) inputs in L4, the main input layer of primary visual cortex (V1), which can be activated in response to GABA release by local high frequency firing of inhibitory neurons, thus decreases neurotransmitter release and modulates short-term plasticity. These results suggest an important role for presynaptic GABAa receptors on TC synapses in regulating local circuit excitability, gating TC information to V1, and providing a novel mechanism for local corticothalamic feedback.

 w.png

Below is the link to access the article: https://www.ncbi.nlm.nih.gov/pubmed/29373653

Presynaptic GABAA Receptors Modulate Thalamocortical Inputs in Layer 4 of Rat V1.pdf


2018-03-14 READ MORE

各单位:

201859日起,取消201611月发布的《关于不做固定资产相关事宜的通知》的相关条款,所有单价≥1000元的设备或设备维修配件或设备中的耗材申请不属固定资产时均须通过统一身份认证系统登录浙江大学仪器设备管理系统”选择资产业务办理中的“办理设备建账”页面里“申请不属固定资产”模块进行申报并进行财务预约。为方便师生办理业务59日至531日期间,原有现场审批办理模式和网上申报模式皆可办理,自61日起,终止原有现场审批办理模式,全部业务均需网上申报。

  申报时须上传发票,并根据实际情况阐述理由,具体要求如下:

1.选择申请理由为“维修更换配件”时需在佐证材料处上传维修单或维修协议;无法提交维修单或维修协议的照片,请在理由补充栏内说明内阐述理由。

2.选择申请理由为“使用寿命不足一年”时需在佐证材料处上传产品保修卡等证明。无法提交,请在理由补充栏内说明内阐述理由。

3.选择申请理由为“特殊情况使用,无法回收”时如无法提交佐证材料,请在理由补充栏内说明内阐述理由。

4.对于单价≥2万元(含)以上申请不属固定资产的,需上传物品照片;如果是维修更换的还需上传更换下来的旧件照片。

5.通过审批后,申请人由本系统完成财务预约,持预约单和发票递交计财处不等候报销窗口。

   请遵照执行,并相互转告。

    办理流程及审批过程参见实验室与设备处办事流程:   http://zjulab.zju.edu.cn/2018/0508/c3145a803114/page.psp

     实验室与设备管理处

     201858

2018-05-08 READ MORE

Important Remindings:

Deadline of Abstract Submission; 15th April, 2018

Deadline of Pre-Registration: 29th April, 2018

Website Link: www.apcv2018.org


一、会议简介

由浙江大学主办,浙江大学心理与行为科学系、浙江大学系统神经与认知科学研究所和中国科学院心理研究所承办的第十四届亚太视觉会议暨第三届中国视觉科学学术会议将于2018713日至716日在杭州西湖之滨的望湖宾馆召开。

此次大会旨在扩大亚太地区与中国视觉研究领域专家的学术交流,提升中国心理学整体学术水平,推动心理学在一带一路沿线城市的发展和应用,促进心理学在社会创新实践中的广泛应用,服务于创新驱动的国家战略。

本次会议是亚太地区规格最高、规模最大的视觉学术盛会,是国内外心理学及相关学科专家、学者学术和信息交流的平台。议题涵盖基础视觉认知、临床视觉、视觉过程的神经机制、机器视觉与人工智能、学习与发展、虚拟视觉等主题。会议将邀请8位领域顶级专家做主题报告,另设8场大会报告、8场专题讨论、以及4场张贴报。届时将有400余名代表参加,涵盖基础研究的专业人员与从事应用领域的相关人员。他们时刻关注着视觉研究领域的动态,也为视觉科学产业的发展与壮大做出了卓越的贡献。


二、会议时间

20180713-20180716


三、会议地点

中国·浙江·杭州·望湖宾馆

望湖宾馆地处商业中心地带,交通便捷,距西湖仅一步之遥,地理位置得天独厚,其中顶楼的望湖楼餐厅,素有望湖楼下水如天的美誉,在品尝地道杭州风味的同时可一览西湖全景;与繁华武林街串联的商业精品街区,错落有致又不失古朴淡典,是精致优雅的购物首选之地。

 

四、会议主题

视觉心理物理学、视觉生理/解剖学、视觉记忆、知觉和注意、计算机视觉、社会知觉、脑成像、眼动、多感官知觉、视觉发展、人工视觉、阅读及词汇再认、面部及客体知觉、艺术及视觉科学、临床视觉。


五、投稿方式

(一)摘要中、英文皆可,鼓励英文方式提交。

(二)与会者作为第一作者的摘要仅限一篇。

(三)要求使用统一的word模板格式,请通过www.apcv2018.org网站

“Abstract Submission”入口下载模板和提交摘要。

(四)摘要截止时间:2018415日(更新)。

(五)录用通知时间:2018510日。


六、缴费注册

请通过“Registration”入口缴费。注册费如下所示:

类别
普通会员
博士后会员
学生会员
提前注册2018年4月29日(更新)

RMB 1900

(USD 320)

RMB 1600

(USD 270)

RMB 1300

(USD 220)

普通注册

RMB 2100

(USD 360)

RMB 1800

(USD 310)

RMB 1500

(USD 260)

注:所有时间以最后一个时区时间为准


七、特邀主题报告专家

1523519301854826.jpg


八、专题讨论会

1.Vision in nonhuman primates

Organizer: Dajun Xing, Beijing Normal University

2.Translational and clinical vision,

Organizer: Changbing Huang, Institute of Psychology, CAS

3.Visual attention

Organizer: Liqiang Huang, The Chinese University of Hong Kong

4.Multisensory processing

Organizer: Yu Xiongjie/ Anna Wang Roe, Zhejiang University

5.Binocular depth perception

Organizer: Gang Chen/ Anna Wang Roe, Zhejiang University

6.Culture shapes face processing

Organizer: Roberto Caldara, University of Fribourg

7.Changes in statistical regularity as people age

Organizer: Su-Ling Yeh, National Taiwan University

8.Linking objects from vision and beyond: Development in early life

Organizer: Chia-huei Tseng, Tohoku University


    九、组委会

 席:

沈模卫,教授,长江学者,浙江大学心理与行为科学系

 菁,教授,国家千人计划入选者,浙江大学系统神经与认知科学研究所所长

黄昌兵,研究员,中国科学院心理研究所

  员(按拼音顺序):

 方,教授,长江学者,北京大学心理与认知科学学院院长,麦戈文脑科学研究所常务副所长,杰出青年科学基金获得者

傅小兰,研究员,中国科学院心理研究所所长,中国心理学会理事长

 生,教授,国家千人计划入选者,中科院生物物理所,脑与认知科学国家重点实验室主任

 毅,研究员,杰出青年科学基金获得者,中国科学院心理研究所

 武,教授,长江学者,杰出青年基金获得者,北京师范大学认知神经科学与学习国家重点实验室主任,学术委员会委员

吕忠林, 教授,美国俄亥俄州立大学认知与脑科学中心主任、认知与行为脑影像中心主任,Psychological Review副主编

 天,教授,入选青年千人计划,国家自然科学基金委优秀青年基金获得者,中国科学技术大学生命科学学院

阴正勤,教授,第三军医大学西南医院眼科医院院长、兼任中国人民解放军总医院(301医院)眼科主任

 聪,教授,长江学者,杰出青年基金获得者,北京大学心理与认知科学学院,北京大学-清华大学联合生命科学中心高级研究员



2018-04-10 READ MORE
2018-05-29 READ MORE
2018-05-29 READ MORE
2018-05-29 READ MORE

Significance

Body-centered (egocentric) and world-centered (allocentric) spatial reference frames are both important for spatial navigation. We have previously shown that vestibular heading signals, which are initially coded in a head-centered reference frame, are no longer head-centered in the ventral intraparietal (VIP) area, but instead are represented in either a body- or world-centered frame, as the two frames were not dissociated. Here, we report a flexible switching between egocentric and allocentric reference frames in a subpopulation of VIP neurons, depending on gaze strategy. Other VIP neurons continue to represent heading in a body-centered reference frame despite changes in gaze strategy. These findings suggest that the vestibular representation of heading in VIP is dynamic and may be modulated by task demands.

Abstract

By systematically manipulating head position relative to the body and eye position relative to the head, previous studies have shown that vestibular tuning curves of neurons in the ventral intraparietal (VIP) area remain invariant when expressed in body-/world-centered coordinates. However, body orientation relative to the world was not manipulated; thus, an egocentric, body-centered representation could not be distinguished from an allocentric, world-centered reference frame. We manipulated the orientation of the body relative to the world such that we could distinguish whether vestibular heading signals in VIP are organized in body- or world-centered reference frames. We found a hybrid representation, depending on gaze direction. When gaze remained fixed relative to the body, the vestibular heading tuning of VIP neurons shifted systematically with body orientation, indicating an egocentric, body-centered reference frame. In contrast, when gaze remained fixed relative to the world, this representation changed to be intermediate between body- and world-centered. We conclude that the neural representation of heading in posterior parietal cortex is flexible, depending on gaze and possibly attentional demands.

Keywords

ventral intraparietal area | reference frame | vestibular |body/world-centered | egocentric/allocentric

 

Online Paper: http://www.pnas.org/content/early/2018/03/14/1715625115

Flexible egocentric and allocentric representations of heading signals in parietal cortex.pdf

Reference

[1] Chen X, DeAngelis GC, Angelaki DE (2013) Diverse spatial reference frames of vestibular signals in parietal cortex. Neuron 80:1310-1321.

 

2018-03-27 READ MORE

In a recent study published in Cerebral Cortex entitled “Presynaptic GABAa Receptors Modulate Thalamocortical Inputs in Layer 4 of Rat V1”, Dr. Lang Wang and her colleagues reported an exciting existence of presynaptic GABAa receptors selectively expressed on thalamocortical axon terminals by combining electrophysiology, optogenetic and EM approaches, which provides a novel mechanistic insight into the effects of changes in cortical inhibition and the ability to modulate inputs onto cortical circuits locally via presynaptic GABAa receptors.

 

Neocortical GABAergic neurons are diverse and connect broadly to excitatory neurons, providing cortical circuits with sophisticated computational control of neuronal activity. While there is general agreement regarding the involvement of fast GABAa receptor-mediated inhibition in the control of circuit excitability, several unresolved issues remain concerning how this regulation is achieved. The current thinking is that GABAa receptors are located mainly at postsynaptic and extrasynaptic sites in neocortex, thus manipulation of fast inhibition would only affect intracortical circuits, while leaving incoming afferent inputs unaffected. Here we report that GABAa receptors containing specific subunits are selectively present on presynaptic terminals of thalamocortical (TC) inputs in L4, the main input layer of primary visual cortex (V1), which can be activated in response to GABA release by local high frequency firing of inhibitory neurons, thus decreases neurotransmitter release and modulates short-term plasticity. These results suggest an important role for presynaptic GABAa receptors on TC synapses in regulating local circuit excitability, gating TC information to V1, and providing a novel mechanism for local corticothalamic feedback.

 w.png

Below is the link to access the article: https://www.ncbi.nlm.nih.gov/pubmed/29373653

Presynaptic GABAA Receptors Modulate Thalamocortical Inputs in Layer 4 of Rat V1.pdf


2018-03-14 READ MORE

In March 2018, IEEE Transactions on Medical Imaging published a full research paper from Dr. Xiaotong Zhang’s group, titled “Investigating the Influence of Spatial Constraints on Ultimate Receive Coil Performance for Monkey Brain MRI at 7T”. Ph.D. candidate Yang Gao is the first author.

The RF receive coil array has become increasingly vital in current MR imaging practice due to its extended spatial coverage, maintained high SNR, and improved capability of accelerating data acquisition. In this study, seven hypothetical ultimate coil arrays with different coil-space configurations were mounted over a numerical macaque head model (as shown below), and the influences of coil-space design parameters were systematically investigated through evaluating the spatial constrained ultimate intrinsic SNR (UISNR) and ultimate g-factor (uGF); moreover, simulations were also conducted by using four coil arrays with limited number of loop-only elements, in order to explore to what extent, the ultimate coil performance can be achieved by using practical coil designs, and hence several guidelines in RF coil design for monkey brain imaging at 7T have been tentatively concluded. It is believed that the present analysis will offer important implications in novel receive array design for monkey brain MR imaging at UHF.

xt.png

Online Paperhttp://ieeexplore.ieee.org/document/8307466/

Investigating the Influence of Spatial Constraints on Ultimate Receive Coil Performance for Monkey Brain MRI at 7T

2018-03-09 READ MORE

脑科技领域是国家科技发展战略中的重点方向,为了进一步推动脑科学研究与脑机融合技术的科技创新,培养理、工、医等多学科交叉的跨领域人才,浙江大学求是高等研究─系统神经与认知科学研究所【赖欣怡教授课题组】,特面向海内外公开招聘博士后2-3名,竭诚欢迎海内外精英加盟。

浙江大学系统神经与认知科学研究所成立于2013年,主要目标为解决认知与行为神经科学领域的重大问题,探索脑高级功能的神经网络机制,在脑功能和脑疾病等相关研究中取得重大突破;为相关医学、神经科学、工程学以及其他领域交叉学科的沟通搭建了桥梁;同时致力于跨学科研究,将与各大医院紧密合作,使科研成果产业化,真正的推动神经医学的发展。

赖欣怡课题组致力于发展先进的神经工程技术,通过生医微机电技术、超高场磁共振成像技术、神经调控技术、计算神经科学的多学科交叉整合创新,开发脑科学研究及脑疾病诊治需要的关键技术,主要研究:(1)神经调控技术:发展磁兼容聚焦超声及脑深部电刺激技术应用于脑功能与神经精神疾病的研究;(2)脑机接口:研究(非人)灵长类触动觉神经编码机制;(3)生医微机电芯片传感器:采用生医微机电技术开发具复合功能的神经探针与生医微芯片系统。近三年已获3项国家自然科学基金(主持2项、子课题负责人1项)、1项科技部国家重点研发计划(骨干)、2项中央高校科研经费(主持1项、共同主持1项),及1项省级大科学装置研制项目(子课题负责人1项)等资助。

 

【应聘人员基本条件】

1、已取得工程学、生物学、医学或药学等相关专业博士学位。

2、良好的独立科研能力及科学素养、富有责任感和团队协作精神。

3、良好的英文阅读、写作和口头交流能力。

4、年龄35周岁以下,身体健康。

5、以下背景经验者优先考虑:

(1)动物脑手术实验经验。

(2)结构与功能核磁共振影像分析。

(3)神经电生理数据分析及神经信息编码与解码模型。

(4)良好的编程能力,熟悉Matlab、C或R语言。

(5)生医微机电制程及芯片设计经验。

【工作待遇】

    工资及福利待遇按国家博士后相关规定执行,年薪一般15 - 20万元人民币;优秀博士可申请浙江大学国际交流计划引进项目,获批年薪可达30万元人民币;提供教师公寓(优惠价租赁)

 

【需提供的材料】

申请者通过电子邮件,邮件主题请注明:“博士后应聘_姓名”,提供如下材料:

1、个人简历(包括一般情况、受教育经历、工作经历、专业技能及特长、各类研究项目、各类发表论文、各类奖励等);

2、2~5篇代表性论文的PDF全文版;

3、研究兴趣及受聘后的工作设想和目标。

 

【联系方式】

赖欣怡教授

联系邮箱:laihy@zju.edu.cn

2018-05-03 READ MORE

A postdoctoral position to conduct ultra-high-field MRI methods development and application studies is available in ZIINT (http://www.ziint.zju.edu.cn/index.php/Index/index.html), under the supervision of both Prof. Anna Roe and Prof. Ruiling Bai. ZIINT features an MRI center for both human and animal work (Zhejiang University-Siemens Brain Imaging Research Center) which houses a 3T Prisma and 7T Magnetom, MR-compatible sensory stimulus presentation systems, human  MR-compatible EEG system, coil making facility, and animal support equipment. 

 

This project will be focused on developments of MRI sequences and methods on the 7T MRI. The potential directions includes but is not limited to (1) magnetic resonance spectroscopy (MRS) and related imaging techniques; (2) advanced diffusion MRI for microstructure imaging; (3) temperature mapping; (4) high-resolution CBF and CBV imaging. Another direction would be the applications of these newly developed sequences, for example, in the diagnosis of brain disorders by collaborating with hospitals nearby. The candidate will also have the chance to combine other methodologies developed in PI's lab, including optical imaging, neurophysiology, focal brain stimulation methods (electrical, pulsed near infrared stimulation, and optogenetics stimulation).

Candidates should have a strong research background in MRI technique, especially on Siemens platform. Familiarity with Matlab and MRI physics is a plus. Candidate should have ability to work both independently and as part of a team with other neuroscientists, MR physcists, and animal care personnel.

Please send CV, research statement and names of three references to:
Email: ruiliangbai@zju.edu.cn; Salary and rank will be commensurate with experience.

 

Ruiliang Bai,  Associated Professor

Zhejiang University Director of Zhejiang University Interdisciplinary Institute of  Neuroscience and Technologe


2018-04-23 READ MORE

根据课题组科研工作需要,浙江大学求是高等研究院系统神经与认知科学研究所高利霞课题组“听觉的感知与认知实验室”拟公开招聘博士后1-2名。招聘坚持公开、公平、竞争、择优的原则,经资格审核后,组织面试考核。一经录用,待遇从优,年薪18万元起。

 

一、课题组研究方向

本课题组主要以灵长类动物狨猴为研究对象,采用电生理学、行为学和分子生物学方法研究:

1. 自然界声音、语言和音乐等复杂声在大脑的神经编码和环路机制;

2. 狨猴叫声的发育过程;

3. 人类神经精神系统疾病,如自闭症,在狨猴的建模和神经环路机制研究。

更多详情可见本课题组网页:http://www.ziint.zju.edu.cn/index.php/Index/zindex.html?tid=0&userid=16

 

二、岗位要求

1. 具有热爱学习、积极进取的态度;

2. 具有独立的科研能力,能够独立思考和解决具体实验问题;

3. 近年获得相关领域博士学位,年龄不超过35岁;

4. 具有神经科学、医学、生物医学工程、心理学、计算机和数学等相关专业背景者优先;

5. 熟悉分子生物学和在体电生理记录者优先。

 

三、联系方式

有意者请将本人简历、博士学位证书扫描件和求职信发送至sunhao@zju.edu.cn(孙昊收),邮件主题请注明“姓名+毕业院校+博士后应聘”,正文表明本人求职意向,并重点介绍本人的科研经历和专业技能及特长。符合要求者,我们将尽快安排面试。


2018-03-13 READ MORE

SHARED FACILITY

  • Highfield MRI

  • Nonhuman Primate Facility

  • Two Photon Microscopy

  • High Throughput Microscopy

  • RF Coil

  • 3Dprinting and Machinng

  • Computer Cluster

  • Viral Vector Core

  • Highfield MRI

  • Nonhuman Primate Facility

  • Two Photon Microscopy

  • High Throughput Microscopy

  • RF Coil

  • 3Dprinting and Machinng

  • Computer Cluster

  • Viral Vector Core

THE TEAM

ABOUT US

The Zhejiang University Interdisciplinary Institute of Neuroscience and Technology (ZIINT) is a new center that fosters interdisciplinary interactions between neuroscience and other disciplines. This center is currently home to 15 laboratories, a non-human primate facility, two-photon and high throughput microscopy facility, viral vector core, computing cluster, machine shop, and histological services. It also features an MRI center for both human and animal work (Zhejiang University-Siemens Brain Imaging Research Center) which houses a 3T Prisma and 7T Magnetom, MR-compatible sensory stimulus presentation systems, human  MR-compatible EEG system, coil making facility, and animal support equipment.


Philosophy:The future of brain sciences lie with integration of approaches from other scientific realms. Zhejiang’s engineering strengths include biomedical engineering, optical engineering, nanotechnology, materials science, information sciences, and robotics. Zhejiang University’s world-class medical school features cutting edge research in cellular and molecular neuroscience. Translational efforts are supported by the Center for Translational Medicine and close ties with leading hospitals. Student quality is top notch. Zhejiang is an environment where diverse disciplines readily cross-foster.We are currently seeking investigators with interests in collaborative, cross-dsciplinary approaches.


ZIINT is located on the beautiful Hua Jia Chi campus, minutes from the famous West Lake, nature conservatories, and tea plantations of Hangzhou. Please feel free to contact us(ZIINT3@zju.edu.cn).


QQ图片20180402144718.jpg

System neural and cognitive science research institutereturn

Login

The institute's official website to welcome you

Login